Start Submission Become a Reviewer

Reading: The critical bulk Richardson number in urban areas: verification and application in a numeri...

Download

A- A+
Alt. Display

Original Research Papers

The critical bulk Richardson number in urban areas: verification and application in a numerical weather prediction model

Authors:

Amela Jeričević ,

Croatian Meteorological and Hydrological Service, Grič 3, 10000 Zagreb, HR
X close

Branko Grisogono

Andrija Mohorovičić Department of Geophysics, Faculty of Science, University of Zagreb, Horvatovac bb, 10000 Zagreb, HR
X close

Abstract

Dispersion models require hourly values of the mixing height (H) that indicates the existence and vertical extent of turbulent mixing. Urban areas, which are usually industrial areas too, have H higher than rural areas, and commonly used methods for deriving H should not be applied under the same conditions as in homogeneous conditions. The bulk Richardson number (RiB) methodwas applied to determineH over Zagreb, Croatia. Impact of urban areas on the choice of critical values of bulk Richardson number (RiBc) was explored, and different values were used for convective boundary layer (CBL) and for stable boundary layer (SBL). Aire Limitee Adaptation Dynamique development InterNational (ALADIN), a limited area numerical weather prediction (NWP) model for short-range 48-h forecasts, was used to provide one set of input parameters. Another input set comes from radio soundings. The values of H, modelled and based on compared measurements, and the correlation coefficient as well as standard deviation and bias were calculated on a large data set to determine RiBc ranges applicable in urban areas. It is shown that RiB method can be used in urban areas, and that urban RiBc should have certain limitations despite of a wide spectrum of practical values used today. Significantly increased RiBc values in SBL were determined from the NWP and soundings data, which is the consequence of increased surface roughness in the urban area. The verification of ALADIN through the determination of H was also done. Decoupling from the surface in the very SBL was detected as a consequence of the flow cease resulting in RiB becoming very large.

How to Cite: Jeričević, A. and Grisogono, B., 2006. The critical bulk Richardson number in urban areas: verification and application in a numerical weather prediction model. Tellus A: Dynamic Meteorology and Oceanography, 58(1), pp.19–27. DOI: http://doi.org/10.1111/j.1600-0870.2006.00153.x
  Published on 01 Jan 2006
 Accepted on 30 May 2005            Submitted on 20 Oct 2004

References

  1. Angevine , W. M. , White , A. B. , Senff , C. J. , Trainer , M. , Banta , R. M. and Ayoub , M. A. 1999 . Urban-rural contrasts in mixing heights and cloudiness over Nashville in 1999 . J. Geophys. Res . 108 , https://doi.org/10.1029/2001JDO01061 , AAC 3-1-AAC 3-10,2003 .  

  2. Arya , S. P. 1999 . Air Pollution Meteorology and Dispersion . 1st edn. Oxford University Press , New York , 310 .  

  3. Balclanov , A. and Kuchin , A. 2004 . The mixing height in urban areas: comparative study for Copenhagen . Atmos. Chem. Phys. Discuss . 4 , 2839 – 2866 .  

  4. Businger , J. A. , Wyngaard , J. C. , Izumi , Y. and Bradley , E. F. 1971 . Flux profile relationships in the atmospheric surface layer . J. Atmos. Sci . 28 , 181 – 189 .  

  5. Fay , B. , Schrodin , R. , Jacobsen , I. and Engelbart , D. 1997 . Validation of mixing heights derived from the operational NWP models at the German Weather Service . EURASAP Workshop Proceedings on the Determination of the H-Current Progress and Problems. (ed. S.-E. Gryning ), Riso-R-997 (EN) , 55 – 58 .  

  6. Geleyn , J. F. 1987 . Use of a modified Richardson number for parameter-izing the effect of shallow convection. In: Short and Medium Range Numerical Weather Prediction (ed. Z. Matsuno ). Special volume of J. Meteor. Soc. Japan , 141 – 149 .  

  7. Geleyn , J. F. , Banciu , D. , Bubnova , R. , lhasz , I. , Ivanovici , V. , Le Moigne , P. and Radnoti , G. 1992 . The International Project ALADIN: Summary of Events October 1992-October 1993. LAM Newsletter 23.  

  8. Grisogono , B. , Strom , L. and Tjernstriim , M. 1998 . Small-scale variabil-ity in the coastal atmospheric boundary layer . Bound.-LayerMeteora 88 , 23 – 46 .  

  9. Grisogono , B. and Oerlemans , J. 2001 . A theory for the estimation of surface fluxes in simple katabatic flows . Quart. J. R. Meteorol. Soc . 127 , 2725 – 2739 .  

  10. Gryning , S.-E. and Batchvarova , E. 2002 . Marine boundary layer and turbulent fluxes over the Baltic Sea: measurements and modelling . Bound.-Layer Meteorol . 103 , 29 – 47 .  

  11. Gryning , S.-E. and Batchvarova , E. 2003 . Marine atmospheric boundary-layer height estimated from NWP model output . Int. J. Environ. Pollut . 20 (No. 1/2/3/4/5/6) 147 – 153 .  

  12. Holzworth , C. G. 1964 . Estimates of mean maximum mixing depths in the contiguous United States . Mon. Wea. Rev . 92 , 235 – 242 .  

  13. Holzworth , C. G. 1967 . Mixing depths, wind speeds and air pollution potential for selected locations in United States . J. AppL Meteorol . 6 , 1039 – 1044 .  

  14. Ivatek-§ahdan , S. and Tudor , M. 2004 . Use of high-resolution dynamical adaptation in operational suite and research impact studies. Meteorol . Z. 13 ( 2 ), 99 – 108 .  

  15. Louis , J. F. 1979 . A parametric model of vertical eddy fluxes in the atmosphere , Bound.-Layer Meteorol . 17 , 102 – 187 .  

  16. Louis , J. F. , Tiedke , M. and Geleyn , J. E 1981 . A short history of PBL parameterization at ECMWF’ , In: Proceedings from the ECMWF Workshop on Planetary Boundary Layer Parameterization’ , 59-80 November 1981, ECMWF, Reading, Berkshire, U.K. , 59 – 79 .  

  17. Mahrt , L. 1981 . Modelling the depth of the stable boundary layer , Bound.-Layer Meteorol . 21 , 3 – 19 .  

  18. Mahrt , L. 1998 . Stratified atmospheric boundary layers and breakdown models . Theor Comp. Fluid Dyn . 11 , 263 – 279 .  

  19. Marku , M. and Fischer , C. 1999 . Evaluation of semi-linear or linear grids in ARPEGE-ALADIN . LAM Newslett . 28 , 151 – 153 .  

  20. Maryon , R. H. and Best , M. J. 1992 . ‘NAME’, ATMES’ and the Bound-ary Layer Problem. U.K. Met. Office (APR) Turbulence and Diffusion Note. 204.  

  21. Mortensen , N. G. , Landberg , L. , Troen , L. and Petersen , E. L. 1993 . WASP user’s guide, Riso National Labaratory, Roskilde , Denmark , 209 pp .  

  22. Mortensen , N. G. , Landberg , L. , Troen , L. and Petersen , E. L. 1993 . Wind Atlas Analysis and Application Program - WAsP , Vol. 2 : User’s Guide. Riso National Laboratory, Roskilde, Riso-I-666(v.2)(EN)  

  23. Parlange , M. B. and Brutsaert , W. 1989 . Are radiosonde time scales appropriate to characterize boundary layer wind profiles? J. Atmos. Sci . 29 , 249 – 255 .  

  24. Seibert , R , Beyrich , F. , Gryning , S.-E. , Joffre , S. , Rasmussen , A. and Tercier , Ph. 2000 . Review and interscomparison of operational meth-ods for the determination of the mixing height . Atmos. Environ . 34 , 1001 – 1027 .  

  25. Simmons , A. J. and Burridge , D. M. 1981 . An energy and angular mo-mentum conserving vertical finite difference scheme and hybrid ver-tical coordinate . Mon. Wea. Rev . 109 , 758 – 766 .  

  26. Sørensen , J. H. , Rasmussen , A. and Svensmark , H. 1996 . Forecast of at-mospheric boundary-layer height for ETEX real-time dispersion modelling . Phys. Chem. Earth . 21 , 435 – 439 .  

  27. Sørensen , J. H. 1998 . Sensitivity of the DERMA long-range Gaussian dispersion model to meteorological input and diffusion parameters . Atmos. Environ . 24 , 4195 – 4260 .  

  28. Stull , R. B. 1988 . An Introduction to Boundary Layer Meteorology . Kluwer Academic Publishers , Norwell , MA , 666 .  

  29. Troen , I. B. and Mahrt , L. 1986 . A simple model of the atmospheric boundary layer; sensitivity to surface evaporation . Bound.-Layer Meteorol . 37 , 129 – 148 .  

  30. Vogelezang , D. H. P. and Holtslag , A. A. M. 1996 . Evaluations and model impacts of alternative boundary layer height formulations . Bound.-Layer Meteorol . 81 , 245 – 269 .  

  31. Zilitinkevich , S. and Calanca , P. 2000 . An extended theory for the stably stratified atmospheric boundary layer . Quart. J. R. Meteorol. Soc . 126 , 1913 – 1923 .  

  32. Zilitinkevich , S. and Baldanov , A. 2002 . Calculation of the height of the stable boundary layer in practical applications . Bound.-Layer Meteo-rol . 105 , 389 – 409 .  

  33. Zilitinkevich , S. , Perov , V. L. and King , J. C. 2002 . Near surface tur-bulent fluxes in stable stratification: calculation techniques for use in general circulation models . Quart. J. R. Meteorol. Soc . 128 , 1571 – 1587 .  

  34. Žagar , M. and Ralcovec , J. 1999 . Small scale surface wind prediction using dynamical adaptation . Tellus 51A , 489 – 504 .  

comments powered by Disqus