Start Submission Become a Reviewer

Reading: Surrogate cloud fields generated with the iterative amplitude adapted Fourier transform algo...

Download

A- A+
Alt. Display

Original Research Papers

Surrogate cloud fields generated with the iterative amplitude adapted Fourier transform algorithm

Authors:

Victor Venema ,

Meteorological Institute of Bonn University, DE
X close

Steffen Meyer,

Leibniz-Institut für Meereswissenschaften Kiel, DE
X close

Sebastián Gimeno García,

University of Leipzig, DE
X close

Anke Kniffka,

University of Leipzig, DE
X close

Clemens Simmer,

Meteorological Institute of Bonn University, DE
X close

Susanne Crewell,

Meteorological Institute of Bonn University, DE
X close

Ulrich Löhnert,

Meteorological Institute of Bonn University, DE
X close

Thomas Trautmann,

University of Leipzig; German Aerospace Center, Oberpfaffenhofen, DE
X close

Andreas Macke

Leibniz-Institut für Meereswissenschaften Kiel, DE
X close

Abstract

A new method of generating two-dimensional and three-dimensional cloud fields is presented, which share several important statistical properties with real measured cloud fields.Well-known algorithms such as the Fourier method and the Bounded Cascade method generate fields with a specified Fourier spectrum. The new iterative method allows for the specification of both the power spectrum and the amplitude distribution of the parameter of interest, e.g. the liquid water content or liquid water path. As such, the method is well suited to generate cloud fields based on measured data, and it is able to generate broken cloud fields. Important applications of such cloud fields are e.g. closure studies. The algorithm can be supplied with additional spatial constraints which can reduce the number of measured cases needed for such studies. In this study the suitability of the algorithm for radiative questions is evaluated by comparing the radiative properties of cloud fields from cloud resolving models of cumulus and stratocumulus with their surrogate fields at nadir, and for a solar zenith angle of 0° and 60°. The cumulus surrogate clouds ended up to be identical to the large eddy simulation (LES) clouds on which they are based, except for translations and reflections. The root mean square differences of the stratocumulus transmittance and reflectance fields are less than 0.03% of the radiative budget. The radiances and mean actinic fluxes fit better than 2%. These results demonstrate that these LES clouds are well described from a radiative point of view, using only a power spectrum together with an amplitude distribution.

How to Cite: Venema, V., Meyer, S., García, S.G., Kniffka, A., Simmer, C., Crewell, S., Löhnert, U., Trautmann, T. and Macke, A., 2006. Surrogate cloud fields generated with the iterative amplitude adapted Fourier transform algorithm. Tellus A: Dynamic Meteorology and Oceanography, 58(1), pp.104–120. DOI: http://doi.org/10.1111/j.1600-0870.2006.00160.x
  Published on 01 Jan 2006
 Accepted on 2 Sep 2005            Submitted on 18 Aug 2005

References

  1. Austin , R. T. , England , A. W. and Wakefield , G. H. 1994 . Special prob-lems in the estimation of power-law spectra as applied to topographical modeling . IEEE Trans. Geosci. Remote Sensing 32 ( 4 ), 928 – 939 .  

  2. Benassi , A. , Szczap , E , Davis , A. , Masbou , M. , Cornet , C. and co-authors. 2004. Thermal radiative fluxes through inhomogeneous cloud fields: A sensitivity study using a new stochastic cloud generator . Atmos. Res . 72 ( 1-4 ), 291 – 315 .  

  3. Brown , A. R. , Cederwall , R. T. , Chlond , A. , Duynkerke , P. G. , Golaz , J. C. and co-authors. 2002 . Large-eddy simulation of the diurnal cycle of shallow cumulus convection over land . Q. J. R. Meteorol. Soc . 128 ( 582 ), 1075 - 1093 .  

  4. Cahalan , R. F. 1994 . Bounded cascade clouds: Albedo and effective thickness . Nonlinear Proc. Geophys . 1 , 156 – 176 .  

  5. Christalcos , G. 1992 . Random Field Models in Earth Sciences . Academic Press , San Diego , CA, 474 pp. ISBN: 0-12-174230-X.  

  6. Crewell , S. , Czekala , H. , Löhnert , U. , Simmer , C. , Rose , T. and co-authors. 2001. Microwave radiometer for cloud carthography: A 22-channel ground-based microwave radiometer for atmospheric re-search . Radio Sci . 36 , 621 – 638 .  

  7. Crewell , S. , Simmer , C. , Liihnert , U. , Venema , V. , Feijt , A. and co-authors. 2004. The BALTEX Bridge Campaign. An integrated ap-proach for a better understanding of clouds . Bull. Am. Meteorol. Soc . 85 , 1565 – 1584 .  

  8. Davis , A. B. , Marshak , A. , Wiscombe , W. J. and Cahalan , R. E 1996 . Scale-invariance in liquid water distributions in marine stratocumulus, I, Spectral properties and stationarity issues. J. Atmos. Sc i . 53 , 1538 – 1558 .  

  9. Davis , A. B. , Marshak , A. , Gerber , H. and Wiscombe , W. J. 1999 . Horizontal structure of marine boundary layer clouds from cen-timeter to kilometer scales . J. Geophys. Res . 104 ( D6 ), 6123 – 6144 .  

  10. Di Giuseppe , E and Tompkins , A. M. 2003. Effect of spatial organization on solar radiative transfer in three dimensional idealized stratocumulus cloud fields . J. Atmos. Sci . 60 ( 15 ), 1774 - 1794 .  

  11. Duynkerke , P. G. , de Roode , S. R. , van Zanten , M. C. , Calvo , J. , Cuxart , J. and co-authors. 2004. Observations and numerical simulations of the diurnal cycle of the EUROCS stratocumulus case . Q. J. R. Meteorol. Soc . 130 , 3269 – 3296 .  

  12. Evans , K. F. 1998 . The spherical harmonic discrete ordinate method for three-dimensional atmospheric radiative transfer. J. Atmos. Sc i . 55 , 429 – 446 .  

  13. Evans , K. F. and Wiscombe , W. J. 2004 . An algorithm for generating stochastic cloud fields from radar profile statistics . Atmos. Res . 72 , 263 – 289 .  

  14. García , S. G. and Trautmann , T. 2003 . Radiative transfer modeling in inhomogeneous clouds by means of the Monte Carlo method. In: Wis-senschaftliche Mitteilungenaus dem Institutfiir Meteorologie der Universitiit Leipzig, No. 30. Meteorological Institute of Leipzig Univer-sity, Germany. ISBN 3-9808822-0-9.  

  15. Kew , S. 2003 . Development of a 3D Fractal Cirrus Model and Its Use in Investigating the Impact of Cirrus Inhomogeneity on Radiation . MSc Dissertation. Department of Mathematics, University of Reading, UK. http : //www.extrasdg.ac.uk/Maths/research/publications/Msc_ dissertations/Sarah_Kew.pdf .  

  16. Lewis , G. M. and Austin , P. H. 2002 . An iterative method for gen-erating scaling log-normal simulations. In: Proceedings of the I I th Conference on Atmospheric Radiation, Ogden, USA, 3-7 June, http://ams.confex.com/ams/pdfpapers/42772.pdf .  

  17. Liou , K. N. , Ou , S. C. , Talcano , Y. , Roskovensky , J. , Mace , G. G. and co-authors . 2002. Remote sensing of three-dimensional inhomogeneous cirrus clouds using satellite and mm-wave cloud radar data. Geophys. Res. Lett . 29 ( 9 ) DOI: https://doi.org/10.1029/2002GL014846 .  

  18. Löhnert , U. , Crewell , S. and Simmer , C. 2004 . An integrated ap-proach towards retrieving physically consistent profiles of tempera-ture, humidity and cloud liquid water . J. AppL Meteorol . 43 ( 9 ), 1295 – 1307 .  

  19. Los , A. and Duynkerke , P. G. 2000 . Microphysical and radia-tive properties of inhomogeneous stratocumulus: Observations and model simulations . Q. J. R. Meteorol. Soc . 126 ( 570 ), 3287 – 3307 (Part B) .  

  20. Macke , A. , Mitchell , D. and von Bremen , L. 1999 . Monte Carlo radiative transfer calculations for inhomogeneous mixed phase clouds . Phys. Chem. Earth 24 ( 3 ), 237 – 241 .  

  21. Masters , F. and Gurley , K. R. 2003 . Non-Gaussian simulation: Cumula-tive distribution function map-based spectral correction. J. Eng. Mech. Dec ., 1418 - 1428 .  

  22. Scheirer , R. and Macke , A. 2001 . On the accuracy of the independent column approximation in calculating the downward fluxes in the UVA, UVB, and PAR spectral ranges . J. Geophys. Res. Atmos . 106 ( D13 ), 14301 – 14312 .  

  23. Scheirer , R. and Schmidt , S. 2004 . CLABAUTAIR: A new algo-rithm for retrieving three-dimensional cloud structure from airborne microphysical measurements . Atmos. Chem. Phys. Disc . 4 , 8609 – 8625 .  

  24. Schertzer , D. , Lovejoy , S. and Hubert , P. 2002 . An introduction to stochastic multifractal fields . Mathematical problems in environmen-tal science and engineering. In: Series in Contemporary Applied Math-ematics (eds. A. Ern and L. Weiping ). Higher Education Press , Beijing , 106 – 179 .  

  25. Schreiber , T. and Schmitz , A. 1996 . Improved surrogate data for nonlin-earity tests . Phys. Rev. Lett . 77 , 635 – 638 .  

  26. Schreiber , T. and Schmitz , A. 2000 . Surrogate time series . Physica D 142 ( 3-4 ), 346 – 382 .  

  27. Schroeter , M. and Raasch , S. 2002 . Broadening of convective cells dur-ing cold air outbreaks: A high resolution study using a parallelized LES model. In: Proceedings of the 15th Symposium on Boundary Layers and Turbulence, AMS, July 15-19,2002, Wageningen, The Netherlands , 45 – 48 .  

  28. Theiler , J. and Prichard , D. 1996 . Constrained-realization Monte-Carlo method for hypothesis testing . Physica D 94 ( 4 ), 221 – 235 .  

comments powered by Disqus