Start Submission Become a Reviewer

Reading: An examination of ensemble filter based adaptive observation methodologies

Download

A- A+
Alt. Display

Original Research Papers

An examination of ensemble filter based adaptive observation methodologies

Authors:

S. P. Khare ,

Statistical and Applied Mathematical Sciences Institute, 19 T.W. Alexander Drive, RTP, NC, 27709, USA, and National Center for Atmospheric Research, Boulder, CO, 80307-3000, US
X close

J. L. Anderson

Statistical and Applied Mathematical Sciences Institute, 19 T.W. Alexander Drive, RTP, NC, 27709, USA, and National Center for Atmospheric Research, Boulder, CO, 80307-3000, US
X close

Abstract

The type of adaptive observation (AO) schemes of interest in this paper are those which make use of an ensemble forecast generated at a given initial time. The ensemble forecast can be used to quantify the influence of hypothetical observational networks on forecast error covariances. The ensemble transform kalman filter (ETKF) scheme is an example of such a scheme and is used operationally at the National Centers for Environmental Prediction (NCEP). A Bayesian framework for ETKF schemes is developed in this paper. New ETKF AO schemes that make use of covariance localization (CL) are introduced. CL is a technique used to alleviate problems due to sampling errors when estimating covariances from finite samples. No previous study has developed ETKF schemes that make use of CL. A series of observing system simulation experiments (OSSEs) in the non-linear Lorenz 1996 model are used to develop a fundamental understanding of ETKF methods. The OSSEs simulate the problem of choosing observations in a large data void region, to improve forecasts in a verification region located within the data void region. The results demonstrate the important role that techniques for alleviating problems due to sampling errors play in improving the performance of ensemble-based AO techniques.

How to Cite: Khare, S.P. and Anderson, J.L., 2006. An examination of ensemble filter based adaptive observation methodologies. Tellus A: Dynamic Meteorology and Oceanography, 58(2), pp.179–195. DOI: http://doi.org/10.1111/j.1600-0870.2006.00163.x
1
Views
  Published on 01 Jan 2006
 Accepted on 19 Sep 2005            Submitted on 31 Mar 2005

References

  1. Aberson , S. D. 2003 . Targeted observations to improve operational tropical cyclone track forecast guidance . Mon. Wea. Rev . 131 , 1613 – 1628 .  

  2. Anderson , J. L. 2001 . An ensemble adjustment Kalman filter for data assimilation . Mon. Wea. Rev . 129 , 2884 – 2903 .  

  3. Anderson , J. L. 2003 . A local least squares framework for ensemble filtering . Mon. Wea. Rev . 131 , 634 – 642 .  

  4. Anderson , J. L. and Anderson , S. L. 1999 . A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts . Mon. Wea. Rev . 127 , 2741 – 2758 .  

  5. Baker , N. L. and Daley , R. 2000 . Observation and background adjoint sensitivity in the adaptive observation-targeting problem . Quart. J. Roy. Meteor. Soc . 126 , 1431 – 1454 .  

  6. Bergot , T. 1999 . Adaptive observations during FASTEX: a systematic survey of upstream flights . Quart. J. Roy. Meteor. Soc . 127 , 635 – 655 .  

  7. Bergot , T. 2001 . Influence of the assimilation scheme on the efficiency of adaptive observations . Quart. J. Roy. Meteor. Soc . 127 , 635 – 660 .  

  8. Bergot , T. , Hello , G. , Joly , A. and Malardel , S. 1999 . Adaptive observations: a feasibility study . Mon. Wea. Rev . 127 , 743 – 765 .  

  9. Berliner , L. M. , Lu , Z. and Snyder , C. 1999 . Statistical design for adaptive weather observations . J. Atmos. Sci . 56 , 2536 – 2552 .  

  10. Bishop , C. H. and Toth , Z. 1999 . Ensemble transformation and adaptive observations . J. Atmos. Sci . 56 , 1748 – 1765 .  

  11. Bishop , C. H. , Etherton , B. J. and Majumdar , S . 2001 . Adaptive sampling with the ensemble transform Kalman filter, part I . Mon. Wea. Rev . 129 , 420 – 436 .  

  12. Bishop , C. H. , Reynolds , C. A. and Tippett , M. K. 2003 . Optimization of the fixed global observing network in a simple model . J. Atmos. Sci . 60 , 1471 – 1489 .  

  13. Burgers , G. , van Leeuwen , P. J. and Evensen , G. 1998 . Analysis scheme in the ensemble Kalman filter . Mon. Wea. Rev . 126 , 1719 – 1724 .  

  14. Cohn , S. E. 1997 . An introduction to estimation theory . J. Meteor. Soc. Japan 75 , 257 – 288 .  

  15. Emanuel , K. A. , Raymond , D. , Betts , A. , Bosart , L. , Bretherton , C. and co-authors 1995 . Report of the first prospectus development team of the U.S. Weather Research Program to NOAA and NSF . Bull. Amer. Meteor. Soc . 76 , 1194 – 1208 .  

  16. Evensen , G. 1994 . Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics . J. Geophys. Res . 99 , 10143 – 10162 .  

  17. Gaspari , G. and Cohn , S. E. 1998 . Construction of correlation functions in two and three dimensions . Quart. J. Roy. Meteor. Soc . 125 , 723 – 757 .  

  18. Gelaro , R. , Reynolds , C. A. , Langland , R. H. and Rohaly , G. D. 2000 . A predictability study using geostationary satellite wind observations during NORPEX . Mon. Wea. Rev . 128 , 3789 – 3807 .  

  19. Hamill , T. and Snyder , C. 2002 . Using improved background error co-variances from an ensemble Kalman filter for adaptive observations . Mon. Wea. Rev . 130 , 1552 – 1572 .  

  20. Hamill , T. M. , Whitaker , J. S. and Snyder , C. 2001 . Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter . Mon. Wea. Rev . 129 , 2776 – 2790 .  

  21. Hansen , J. A. and Smith , L. 2000 . The role of operational constraints in selecting supplementary observations . J. Atmos. Sci . 57 , 2859 – 2871 .  

  22. Houtelcamer , P. L. and Mitchell , H. L. 1998 . Data assimilation using an ensemble Kalman filter technique . Mon. Wea. Rev . 126 , 796 – 811 .  

  23. Houtelcamer , P. L. and Mitchell , H. L. 2001 . A sequential ensemble Kalman filter for atmospheric data assimilation . Mon. Wea. Rev . 129 , 123 – 137 .  

  24. Ide , K. , Courtier , P. , Ghil , M. and Lorene , A. 1997 . Unified notation for data assimilation: Operational sequential and variational . J. Meteor. Soc. Japan 75 , 181 – 189 .  

  25. Jazwinski , A. H. 1970 . Stochastic Processes and Filtering Theory . Aca-demic Press , New York , 376 pp .  

  26. Khare , S. P. 2004 . Observing network design for improved prediction of geophysical fluid flows—analysis of ensemble methods . PhD thesis , Princeton University , 195 pp .  

  27. Langland , R. H. , Toth , Z. , Gelaro , R. , Szunyogh , I. , Shapiro , M. A., and co-authors 1999 . The North Pacific Experiment (NORPEX-98): targeted observations for improved north American weather forecasts . Bull. Amer. Meteor. Soc . 80 , 1363 – 1384 .  

  28. Leutbecher , M. 2003 . A reduced rank estimate of forecast error variance changes due to intermittent modification of the observing network . J. Atmos. Sci . 60 , 729 – 742 .  

  29. Lorenz , E. N. 1995 . Predictability—a problem partly solved . ECMWF Seminar Proceedings I , 1 , 1 – 18 .  

  30. Lorenz , E. N. and Emanuel , K. A. 1998 . Optimal sites for supplementary weather observations: simulation with a small model . J. Atmos. Sci . 55 , 399 – 414 .  

  31. Majumdar , S. J. , Bishop , C. H. , Etherton , B. J. , Szunyogh , I. and Toth , Z . 2001 . Can an ensemble transform Kalman filter predict reduction in forecast error variance produced by targeted observations . Quart. J. Roy. Meteor. Soc . 127 , 2803 – 2820 .  

  32. Majumdar , S. J. , Bishop , C. H. , Buizza , R., and Gelaro , R. 2002a. A comparison of ensemble transform Kalman filter targeting guidance with ECMWF and NRL total energy singular vector guidance. Quart. J. Roy. Meteor. Soc . 128 , 1 – 23 .  

  33. Majumdar , S. J. , Bishop , C. H. and Etherton , B. J. 2002b. Adaptive asampling with the ensemble transform Kalman filter. Partfieldprogram implementation. Mon. Wea. Rev . 130 , 1356 – 1369 .  

  34. Montani , A. , Thorpe , A. J. , Buizza , R. and Unden , P. 1999 . Forecast skill of the ECMWF model using targeted observations during FASTEX . Quart. J. Roy. Meteor. Soc . 125 , 3219 – 3240 .  

  35. Morss , R. E. , Emanuel , K. A. and Snyder , C. 2001 . Idealized adaptive observation strategies for improving numerical weather prediction . J. Atmos. Sci . 58 , 210 – 232 .  

  36. Palmer , T. N. , Gelaro , R. , Barkmeijer , J. and Buizza , R. 1998 . Singular vectors, metrics and adaptive observations . J. Atmos. Sci . 55 , 633 – 653 .  

  37. Pu , Z.-X. and Kalnay , E. 1999 . Targeting observations with the quasi-linear and adjoint NCEP global models: performance during FASTEX . Quart. J. Roy. Meteor. Soc . 125 , 3329 – 3337 .  

  38. Snyder , C. and Zhang , E 2003 . Assimilation of simulated doppler radar observation with an ensemble Kalman filter . Mon. Wea. Rev . 131 , 1663 – 1677 .  

  39. Szunyogh , I. , Toth , Z. , Morss , R. E. , Majumdar , S. J. , Etherton , B. J. and co-authors. 2000. The effect of targeted dropsonde observations during the 1999 winter storm reconnaissance program. Bull. Amer. Meteor. Soc . 120 , 3520 – 3537 .  

  40. Szunyogh , I. , Toth , Z. , Zimin , A. V. , Majumdar , S. J. and Persson , A. 2002 . Propagation of the effect of targeted observations: the 2000 Winter Storm Reconnaissance Program . Mon. Wea. Rev . 130 , 1144 – 1165 .  

  41. Tippett , M. K. , Anderson , J. L. , Bishop , C. H. , Hamill , T. M. and Whitaker , J. S. 2003 . Ensemble square root filters . Mon. Wea. Rev . 131 , 1485 – 1490 .  

  42. Trevisan , A. and Uboldi , F. 2004 . Assimilation of standard and targeted observations within the unstable subspace of the observation-analysis-forecast cycle system . J. Atmos. Sci . 61 , 103 – 113 .  

  43. Whitaker , J. S. and Hamill , T. M. 2002 . Ensemble data assimilation without perturbed observations . Mon. Wea. Rev . 130 , 1913 – 1924 .  

comments powered by Disqus