Start Submission Become a Reviewer

Reading: Climate reconstruction by regression – 32 variations on a theme

Download

A- A+
Alt. Display

Original Research Papers

Climate reconstruction by regression – 32 variations on a theme

Authors:

Gerd Bürger ,

Institut für Meteorologie, FU Berlin, Carl-Heinrich-Becker-Weg 6.10, D-12165 Berlin, DE
X close

Irina Fast,

Institut für Meteorologie, FU Berlin, Carl-Heinrich-Becker-Weg 6.10, D-12165 Berlin, DE
X close

Ulrich Cubasch

Institut für Meteorologie, FU Berlin, Carl-Heinrich-Becker-Weg 6.10, D-12165 Berlin, DE
X close

Abstract

Regression-based methods fail to provide a sufficiently unique reconstruction of a given millennial history of Northern Hemisphere mean temperature. They instead offer a multitude of variants, depending on the specific data processing scheme. Using a simulated climate history with noise-disturbed pseudo-proxies, we systematically test a set of such configurations, each of which appears to be a priori reasonable, with existing applications elsewhere. This results in an entire spectrum between practically useless and almost perfect reconstructions. The reason lies in the fact that the training variations are not representative of the full millennium, and the regression equations have to be extrapolated. This creates an error that is proportional to both the model uncertainty and the proxy amplitudes. Estimation of that uncertainty is paramount for a useful millennial reconstruction, especially if it is of the parameter-loaded multiproxy type.

How to Cite: Bürger, G., Fast, I. and Cubasch, U., 2006. Climate reconstruction by regression – 32 variations on a theme. Tellus A: Dynamic Meteorology and Oceanography, 58(2), pp.227–235. DOI: http://doi.org/10.1111/j.1600-0870.2006.00164.x
  Published on 01 Jan 2006
 Accepted on 19 Sep 2005            Submitted on 18 May 2005

References

  1. Bardossy , A. and Plate , E. 1991 . Modeling daily rainfall using a semi-Marcov representation of circulation pattern occurence . J. Hydrol . 122 , 33 – 47 .  

  2. Barnston , A. G. , Glantz , M. H. and He , Y. 1999 . Predictive skill of statisti-cal and dynamical climate models in SST forecasts during the1997-98 El Nirio episode and the 1998 La Nina onset . Bull. Am. Meteorol. Soc . 80 , 217 – 243 .  

  3. Blender , R. , Luksch , U. , Fraedrich , K. and Raible , C. 2003 . Predictability study of the observed and simulated European climate using linear regression . Q. J. R. Meteorol. Soc . 129 , 2229 – 2313 .  

  4. Blunier , T. , Chappellaz , J. A. , Schwander , J. , Stauffer , B. and Raynaud , D. 1995 . Variations in atmospheric methane concentration during the Holocene epoch . Nature 374 , 46 – 49 .  

  5. Briffa , K. R. , Osborn , T. J. and Schweingruber , E H. 2004 . Large-scale temperature inferences from tree rings: a review . Glob. Planet. Change 40 , 11 – 26 .  

  6. Briffa , K. R. , Osborn , T. J. , Schweingruber , E H. , Harris , I. C. , Jones , P. D. and co-authors. 2001 . Low-frequency temperature variations from a northern tree ring density network. J. Geophys . Res . 106 ( D3 ), 2929 - 2941 .  

  7. Bürger , G. 2002 . Selected precipitation scenarios across Europe . J. Hydrol . 262 , 99 – 110 .  

  8. Bürger , G. and Cabasch , U. 2005 . Are multiproxy climate reconstruc-tions robust? . Geoph. Res. Lett . doi: https://doi.org/10.1029/2005GL024155 (in press) .  

  9. Crowley , T. 2000 . Causes of climate change over the past 1000 years . Science 289 , 270 – 277 .  

  10. Esper , J. , Cook , E. R. and Schweingruber , E H. 2002 . Low frequency sig-nals in long tree-ring chronologies for reconstructing past temperature variability . Science 295 , 2250 – 2253 .  

  11. Etheridge , D. , Steele , L. P. , Langenfelds , R. L. , Francey , R. J. Bamola , J. M. and co-authors . 1996 . Natural and anthropogenic changes in atmospheric Co2 over the last 1000 years from air in Antarctic ice and fim . J. Geophys. Res . 101 , 4115 – 4128 .  

  12. Fu , Q. and Liou , K. N. 1993 . Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sc i . 50 , 2008 – 2025 .  

  13. IPCC . 2001 . Climate change 2001: the scientific basis . Contribution of Working Group I to the Third Assessment Report of the Intergov-ernmental Panel on Climate Change. Cambridge University Press , Cambridge , 944 .  

  14. Hughes , M. K. and Graumlich , L. J. 1996 . Multimillenial dendro-climatic records from Western North America. In: Climatic Vari-ations and Forcing Mechanisms of the Last 2000 years (eds R. S. , Bradley , P. D. Jones and J. Jouzel ). Springer, Berlin , 109 – 124 .  

  15. Jiang , N. , Ghil , M. and Neelin , D. 1995 . Forecasts of equatorial Pa-cific SST anomalies by using an autoregressive process and sin-gular spectrum analysis . Exp. Long-Lead Forecast Bull . 4 ( 1 ), 35 – 36 .  

  16. Johnson , R. A. and Wichem , D. W. 2002 . Applied Multivariate Analysis . Prentice Hall , New Jersey , 767 .  

  17. Jones , P. D. , Briffa , K. , Barnett , T. P. and Tett , S. E B. 1998 . High-resolution palaeoclimatic records for the last millennium: interpre-tation, integration and comparison with General Circulation Model control-run temperatures . Holocene 8 ( 4 ), 455 – 471 .  

  18. Jones , P. D. and Mann , M. E. 2004 . Climate over past millennia . Rev. Geophys . 42 ( 2 ).  

  19. Jones , P. D. , New , M. , Parker , D. E. , Martin , S. and Rigor , I. G. 1999 . Surface air temperature and its variations over the last 150 years . Rev. Geophys . 37 , 173 – 199 .  

  20. Kalnay , E. , Kanamitsu , M. , Kistler , R. , Collins , W. , Deaven , D. and co-authors . 1996 . The NCEP/NCAR 40-year reanalysis project . Bull. Am. Meteorol. Soc . 77 , 437 – 471 .  

  21. Lean , J. , Beer , J. and Bradley , R. 1995 . Reconstruction of solar irradiance since 1610: implications for climatic change . Geophys. Res. Lett . 22 , 3195 – 3198 .  

  22. Legutke , S. and Voss , R. 1999 . The Hamburg atmosphere-ocean coupled circulation model ECHO-G . DKRZ Technical Report 18 , Hamburg , 62 .  

  23. Lloyd-Hughes , B. and Saunders , M. A. 2002 . Seasonal prediction of European spring precipitation from ENSO and local sea surface tem-peratures . Int. Clim . 22 , 1 – 14 .  

  24. Luterbacher , J. , Rickli , R. , Xoplaki , E. , Tinguely , C. , Beck , C. and co-authors. 2001. The Late Maunder Minimum (1675-1715) - a key period for studying decadal scale climatic change in Europe . Clim. Change 49 ( 4 ), 441 – 462 .  

  25. Mann , M. E. , Bradley , R. S. and Hughes , M. K. 1998 . Global-scale temperature patterns and climate forcing over the past six centuries . Nature 392 , 779 – 787 .  

  26. Mann , M. E. and Rutherford , S. 2002 . Climate reconstruction using `Pseudoproxies’ . Geophys. Res. Lett . 29 ( 10 ), 139 .  

  27. Osborn , T. and Briffa , K. R. 2004 . The real color of climate change? Science 306 , 621 – 622 .  

  28. Qian , B. and Saunders , M. A. 2003 . Seasonal predictability of winter-time storminess over the North Atlantic . Geophys. Res. Lett . 30 ( 13 ), 1698 .  

  29. Rodwell , M. and Folland , C. K. 2001 . Atlantic air-sea interaction and seasonal predictability . Q. J. R. Meteorol. Soc . 128 , 1413 – 1443 .  

  30. Simmons , A. J. , Jones , P. D., da Costa Bechtold , V. Beljaars , A. C. M. , Milberg , P. W. and co-authors. 2004. Comparison of trends and low-frequency variability in CRU, ERA-40, and NCEP/NCAR anal-yses of surface air temperature. J. Geophys. Res . 109 , D24115 .  

  31. Tiedtke , M. 1989 . A comprehensive mass flux scheme for cumulus pa-rameterization in large-scale models . Mon. Weather. Rev . 117 , 1779 – 1800 .  

  32. von Storch , H. , Zorita , E. and Cubasch , U. 1993 . Downscaling of global climate change estimates to regional scales: an application to Iberian rainfall in wintertime . J. Clim . 6 , 1161 – 1171 .  

  33. von Storch , H. , Zorita , E. , Jones , J. M. , Dmitriev , Y. and Tett , S. E B. 2004 . Reconstructing past climate from noisy data . Science 306 , 679 – 682 .  

  34. Zorita , E., Gonzalez-Rouco, E and L, egutke , S. 2003. Testing the Mann et al. (1998) approach to paleoclimate reconstructions in the context of a 1000-yr control simulation with the ECHO-G Coupled Climate Model. J. Clim . 16 , 1368-139 0 .  

comments powered by Disqus