Start Submission Become a Reviewer

Reading: The representation of the analysis effect in three error simulation techniques

Download

A- A+
Alt. Display

Original Research Papers

The representation of the analysis effect in three error simulation techniques

Authors:

Loïk Berre,

Météo France, CNRM/GAME-GMAP, Toulouse, FR
X close

Simona Ecaterina Ştefănescu ,

National Meteorological Administration, SMDCA, Bucharest, RO
X close

Margarida Belo Pereira

Instituto de Meteorologia, Departamento de Vigilância Meteorológica, Lisbon, PT
X close

Abstract

Three error simulation techniques are compared formally, in particular regarding their representation of the analysis step. The associated results are moreover examined for the Aladin-France limited-area model, which is coupled with the Arpege global model.

It is first shown that the analysis error equation involves the same operators as the analysis equation. This implies that the analysis ensemble approach is appropriate, as the analysis equation is used to transform the background and observation dispersions into the analysis dispersion.

By contrast, the standard NMC method relies essentially on the analysis increment equation, which contributes to a large extent to the excessive emphasis on the large-scale structures. The so-called lagged NMC method is shown to be closely related to the Arpege/Aladin model differences.

The analysis ensemble approach gives error spectra that are intermediate between those of the two other methods.

This is in agreement with the representation of the initial and lateral boundary uncertainties, in a way that is consistent with the influence of the analysis equation and with the short forecast ranges.

How to Cite: Berre, L., Ştefănescu, S.E. and Pereira, M.B., 2006. The representation of the analysis effect in three error simulation techniques. Tellus A: Dynamic Meteorology and Oceanography, 58(2), pp.196–209. DOI: http://doi.org/10.1111/j.1600-0870.2006.00165.x
  Published on 01 Jan 2006
 Accepted on 30 Sep 2005            Submitted on 17 Feb 2005

References

  1. Bouttier , F. 1994 . Sur la prévision de la qualité des previsions météorolo-gigues . PhD Dissertation. Universite Paul Sabatier, Toulouse, 240 pp. [Available from Universite Paul Sabatier, Toulouse Cedex, France] .  

  2. Bouttier , E 2002 . Strategies for kilometric-scale LAM data assimilation. In: Report of HIRLAM Workshop on Variational Data Assimilation and Remote Sensing, Helsinki, 21-23 January 2002, Finnish Meteo-rological Institute, 9-17. [Available from SMH I, S-60176 Norrkoping, Sweden ].  

  3. Bubnová , R. , Horányi , A. and Malardel , S. 1993 . Interna-tional project ARPEGE/ALADIN . EWGLAM Newsl . 22 , 117 – 130 .  

  4. Daley , R. 1991 . Atmospheric Data Analysis . Cambridge University Press , Cambridge , 460 pp .  

  5. Deckmyn , A. and Berre , L. 2005 . A wavelet approach to representing background error covariances in a limited area model . Mon. Weather Rev . 133 , 1279 – 1294 .  

  6. Desroziers , G. and Ivanov , S. 2001 . Diagnosis and adaptive tuning of information error parameters in a variational assimilation . Q. J. R. Meteorol. Soc . 127 , 1433 – 1452 .  

  7. Fisher , M. 2003 . Background error covariance modelling. In: Proceedings of the ECMWF Seminar on Recent Developments in Data Assimilation for Atmosphere and Ocean, ECMWF, 8-12 September 2003, 45-63. [Available from ECMWF, Reading, RG2 9AX, UK]  

  8. Houtekamer , P. L. , Lefaivre , L. , Derome , J. , Ritchie , H. and Mitchell , H. L. 1996 . A system simulation approach to ensemble prediction . Mon. Weather Rev . 124 , 1225 – 1242 .  

  9. Lynch , P. and Huang , X.-Y. 1992 . Initialization of the HIRLAM model using a digital filter . Mon. Weather Rev . 120 , 1019 – 1034 .  

  10. Lynch , P. , Giard , D. and Ivanovici , V. 1997 . Improving the efficiency of a digital filtering scheme for diabatic initialization . Mon. Weather Rev . 125 , 1976 – 1982 .  

  11. Parrish , D.E and Derber , J. C. 1992 . The National Meteorological Center’s spectral statistical interpolation analysis system . Mon. Weather Rev . 120 , 1747 – 1763 .  

  12. Radnóti , G. , Ajjaji , R. , Bubnovd , R. , Caian , M. , Cordoneanu , E. and co-authors , 1995 . The spectral limited area model ARPEGE/ALADIN . PWPR Rep. Ser. 7 , WMO-TD 699 , 111 – 117 .  

  13. Sadiki , W. and Fischer , C. 2005 . A posteriori validation applied to the 3D-Var Arpege and Aladin data assimilation systems . Tellus 57A , 21 – 34 .  

  14. Široká , M. , Fischer , C. , Casse , V. , Broklova , R. and Geleyn , J.-E 2003 . The definition of mesoscale selective forecast error covariances for a limited area variational analysis . Meteorol. Atmos. Phys . 82 , 227 – 244 .  

  15. Veersé , E and Thepaut , J.-N . 1998 . Multiple-truncation incremental ap-proach for four-dimensional variational data assimilation . Q. J. R. Meteorol. Soc . 124 , 1889 – 1908 .  

  16. Žagar , N. , Andersson , E. and Fisher , M. 2004 . Balanced tropical data assimilation based on a study of equatorial waves in ECMWF short-range forecast errors . ECMWF Tech. Memo . 437 , 30 pp .  

comments powered by Disqus