Start Submission Become a Reviewer

Reading: Transition of a synoptic system to a polar low via interaction with the orography of Greenland

Download

A- A+
Alt. Display

Original Research Papers

Transition of a synoptic system to a polar low via interaction with the orography of Greenland

Authors:

Rebekah Martin ,

Department of Physics, University of Toronto, 60 St. George St., Toronto, Ontario, M5S 1A7, CA
X close

G. W. K. Moore

Department of Physics, University of Toronto, 60 St. George St., Toronto, Ontario, M5S 1A7, CA
X close

Abstract

A case study of a polar low that occurred over the Labrador Sea from December 29–31, 1997 was performed using the Penn State—NCAR Mesoscale Model version 5 (MM5). The polar low was imaged by the synthetic aperture radar (SAR) on the RADARSAT-1 satellite and as a result, unique high resolution information on the polar low’s surface expression is available. This low is also of interest as it formed from a synoptic-scale low pressure system that underwent a bifurcation through an interaction with the topography of Greenland. Our model results showthat the polar lowachieved a minimum central pressure of 954 hPa with maximum 10 m wind speeds in excess of 30 ms−1. Coincident SSM/I data are in agreement with the model surface wind speed field. Sensitivity studies showed that the genesis of the low was relatively insensitive to air—sea fluxes of sensible and latent heat. The model precipitation field indicates the presence of features reminiscent of rainbands observed to occur in association with tropical cyclones, as well as frontal features typically seen in mid-latitude baroclinic systems. In addition, our model results indicate that precipitation as well as the surface wind contributes to the polar low’s surface expression as imaged by SAR.

How to Cite: Martin, R. and Moore, G.W.K., 2006. Transition of a synoptic system to a polar low via interaction with the orography of Greenland. Tellus A: Dynamic Meteorology and Oceanography, 58(2), pp.236–253. DOI: http://doi.org/10.1111/j.1600-0870.2006.00169.x
  Published on 01 Jan 2006
 Accepted on 10 Oct 2005            Submitted on 27 Jan 2005

References

  1. Atlas , D. 1994 . Footprints of storms on the sea - a view from spacebome synthetic-aperture radar . J. Geophys. Res. Oceans 99 , 7961 – 7969 .  

  2. Atlas , D. and Black , P. G. 1994 . The evolution of convective storms from their footprints on the sea as viewed by synthetic-aperture radar from space . Bull. Am. Meteorol. Soc . 75 , 1183 – 1199 .  

  3. Bresch , J. E , Reed , R. J. and Albright , M. D. 1997 . A polar-low de-velopment over the Bering Sea: analysis, numerical simulation, and sensitivity experiments . Mon. Weather Rev . 125 , 3109 – 3130 .  

  4. Bromwich , D. H. , Cassano , J. J. , Klein , T. , Heinemann , G. , Hines , K. M. and co-authors . 2001 . Mesoscale modeling of katabatic winds over Greenland with the Polar MM5. Mon. Weather Rev . 129 , 2290 – 2309 .  

  5. Dudhia , J. 1989 . Numerical study of convection observed during the win-ter monsoon experiment using a mesoscale two-dimensional model . J. Atmos. Sci . 46 , 3077 – 3107 .  

  6. Forsythe , J. M. and Yonder Haar , T. H. 1996 . A warm core in a polar low observed with a satellite microwave sounding unit . Tellus A 48A , 193 – 208 .  

  7. Grell , G. A. , Dudhia , J. and Stauffer , D. R. 1994 . A Description of the Fifth-Generation Penn StateINCAR Mesoscale Model (MM5) . NCAR, Boulder , CO, USA . pp. 122 .  

  8. Harley , D. G. 1960 . Frontal contour analysis of a ‘polar low’ . Meteorol. Mag . 89 , 146 – 147 .  

  9. Harrold , T. W. and Browning , K. A. 1969 . Polar low as a baroclinic disturbance . Q. J. R. Meteorol. Soc . 95 , 710 – 723 .  

  10. Hobbs , P. V. 1978 . Organization and structure of clouds and precipitation on mesoscale and microscale in cyclonic storms . Rev. Geophys . 16 , 741 – 755 .  

  11. Hobbs , P. V. and Persson , P. O. G. 1982 . The mesoscale and microscale structure and organization of clouds and precipitation in mid-latitude cyclones.5. The substructure of narrow cold-frontal rainbands . J. At-mos. Sci . 39 , 280 – 295 .  

  12. Hong , S. -Y. and Pan , H. -L. 1996 . Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Weather Rev . 124 , 2322 – 2339 .  

  13. Hoskins , B. J. , Mcintyre , M. E. and Robertson , A. W. 1985 . On the use and significance of isentropic potential voracity maps . Q. J. R. Meteorol. Soc . 111 , 877 – 946 .  

  14. Jameson , A. R. , Li , E K. , Durden , S. L. , Haddad , Z. S. , Holt , B. M. and co-authors. 1997 . SIR-C/X-SAR observations of rainstorms. Remote Sens. Environ . 59 , 267 – 279 .  

  15. Janjic , Z. I. 1990 . The step-mountain coordinate: physical package . Mon. Wea. Rev . 118 , 1429 – 1443 .  

  16. Janjic , Z. I. 1994 . The step-mountain eta coordinate model: further de-velopment of the convection, viscous sublayer, and turbulent closure schemes . Mon. Weather Rev . 122 , 927 – 945 .  

  17. Katsaros , K. B. , Vachon , P. W. , Black , P. G. , Dodge , P. P. and Uhlhom , E. W. 2002 . Wind fields from SAR: could they improve our under-standing of storm dynamics . J. Hopkins APL Tech. D . 21 , 86 – 93 .  

  18. King , J. C. , and Turner , J. 1997 . Antarctic Meteorology and Climatology . Cambridge Atmospheric and Space Science Series Volume xi . Cambridge University Press , Cambridge, UK . pp. 409.  

  19. Kuo , Y. H. and Reed , R. J. 1988 . Numerical-simulation of an explo-sively deepening cyclone in the eastern pacific . Mon. Weather Rev . 116 , 2081 – 2105 .  

  20. Kuo , Y. H. , Reed , R. J. and Lownam , S. 1991 . Effects of surface-energy fluxes during the early development and rapid intensification stages of 7 explosive cyclones in the western Atlantic . Mon. Weather Rev . 119 , 457 – 476 .  

  21. Mailhot , J. , Hanley , D. , Bilodeau , B. and Hertzman , O. 1996 . A numerical case study of a polar low in the Labrador Sea . Tellus A 48A , 383 – 402 .  

  22. Marshall , J. , Dobson , E , Moore , K. , Rhines , P. , Visbeck , M. and co-authors. 1998 . The Labrador Sea deep convection experiment . Bull. Am. Meteorol. Soc . 79 , 2033 – 2058 .  

  23. Melsheimer , C. , Alpers , W. and Gade , M. 2001 . Simultaneous observa-tions of rain cells over the ocean by the synthetic aperture radar aboard the ERS satellites and by surface-based weather radars . J. Geophys. Res. Oceans 106 , 4665 – 4677 .  

  24. Moore , G. W. K. 1985 . The organization of convection in narrow cold-frontal rainbands . J. Atmos. Sci . 42 , 1777 – 1791 .  

  25. Moore , G. W. K. , Reader , M. C. , York , J. and Sathiyamoorthy , S. 1996 . Polar lows in the Labrador Sea - a case study . Tellus A 48A , 17 – 40 .  

  26. Moore , G. W. K. and Vachon , P. W. 2002 . A polar low over The Labrador Sea: interactions with topography and an upper-level potential vorac-ity anomaly, and an observation by RADARSAT-1 SAR . Geophys. Res. Lett . 29 , 1773 , doi: https://doi.org/10.1029/2001GL014007 .  

  27. Moore , R. W. and Vonder Haar , T. H. 2003 . Diagnosis of a polar low warm core utilizing the advanced microwave sounding unit . Weather Forecast . 18 , 700 – 711 .  

  28. Mourad , P. D. , Thompson , D. R. and Vandemark , D. C. 2000 . Extracting fine-scale wind fields from synthetic aperture radar images of the ocean surface./ . Hopkins APL Tech. D . 21 , 108 – 115 .  

  29. Pagowski , M. and Moore , G. W. K. 2001 . A numerical study of an extreme cold-air outbreak over the Labrador Sea: sea ice, air-sea in-teraction, and development of polar lows . Mon. Weather Rev . 129 , 47 – 72 .  

  30. Parish , T. R. 1983 . The influence of the Antarctic Peninsula on the wind-field over the western Weddell Sea . J. Geophys. Res. Oceans Atmos . 88 , 2684 – 2692 .  

  31. Rasmussen , E. A. , Claud , C. and Purdom , J. E 1996. Labrador Sea polar lows. Global Atmos. Ocean Syst . 4 , 275 – 333 .  

  32. Rasmussen , E. A. and Turner , J. 2003. Polar Lows: Mesoscale Weather Systems in the Polar Regions 1st Edition. Cambridge University Press , Cambridge, UK . pp. 612 .  

  33. Renfrew , I. A. , Moore , G. W. K. , Guest , P. S. and Bumke , K. 2002 . A comparison of surface layer and surface turbulent flux observations over the Labrador Sea with ECMWF analyses and NCEP reanalyses . J. Phys. Oceanogr . 32 , 383 – 400 .  

  34. Renfrew , I. A. , Moore , G. W. K. , Holt , T. R. , Chang , S. W. and Guest , P. 1999 . Mesoscale forecasting during a field program: meteorological support of the Labrador Sea deep convection experiment . Bull. Am. Meteorol. Soc . 605 – 620 .  

  35. Sanders , E and Gyakum , J. R. 1980 . Synoptic-dynamic climatology of the bomb . Mon. Weather Rev . 108 , 1589 – 1606 .  

  36. Sikora , T. D. , Friedman , K. S. , Pichel , W. G. and Clemente-Colon , P. 2000 . Synthetic aperture radar as a tool for investigating polar mesoscale cyclones . Weather Forecast . 15 , 745 – 758 .  

  37. van den Broeke , M. R. and Gallee , H. 1996 . Observation and simulation of barrier winds at the western margin of the Greenland ice sheet . Q. J. R. Meteorol. Soc . 122 , 1365 – 1383 .  

  38. Wakimoto , R. M. and Bosart , B. L. 2000 . Airborne radar observa-tions of a cold front during FASTEX . Mon. Weather Rev . 128 , 2447 – 2470 .  

  39. Wu , S. Y. and Liu , A. K. 2003 . Towards an automated ocean feature detection, extraction and classification scheme for SAR imagery . Int. J. Remote Sens . 24 , 935 – 951 .  

comments powered by Disqus