Start Submission Become a Reviewer

Reading: Initiation of ensemble data assimilation

Download

A- A+
Alt. Display

Original Research Papers

Initiation of ensemble data assimilation

Authors:

M. Zupanski ,

Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, US
X close

S. J. Fletcher,

Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, US
X close

I. M. Navon,

Department of Mathematics and School of Computational Science and Information Technology, Florida State University, Tallahassee, FL, US
X close

B. Uzunoglu,

School of Computational Science and Information Technology, Florida State University, Tallahassee, FL, US
X close

R. P. Heikes,

Department of Atmospheric Science, Colorado State University, Fort Collins, CO, US
X close

D. A. Randall,

Department of Atmospheric Science, Colorado State University, Fort Collins, CO, US
X close

T. D. Ringler,

Department of Atmospheric Science, Colorado State University, Fort Collins, CO, US
X close

D. Daescu

Department of Mathematics and Statistics, Portland State University, Portland, OR, US
X close

Abstract

The specification of the initial ensemble for ensemble data assimilation is addressed. The presented work examines the impact of ensemble initiation in the Maximum Likelihood Ensemble Filter (MLEF) framework, but is also applicable to other ensemble data assimilation algorithms. Two methods are considered: the first is based on the use of the Kardar-Parisi-Zhang (KPZ) equation to form sparse random perturbations, followed by spatial smoothing to enforce desired correlation structure, while the second is based on the spatial smoothing of initially uncorrelated random perturbations. Data assimilation experiments are conducted using a global shallow-water model and simulated observations. The two proposed methods are compared to the commonly used method of uncorrelated random perturbations. The results indicate that the impact of the initial correlations in ensemble data assimilation is beneficial. The root-mean-square error rate of convergence of the data assimilation is improved, and the positive impact of initial correlations is notable throughout the data assimilation cycles. The sensitivity to the choice of the correlation length scale exists, although it is not very high. The implied computational savings and improvement of the results may be important in future realistic applications of ensemble data assimilation.

How to Cite: Zupanski, M., Fletcher, S.J., Navon, I.M., Uzunoglu, B., Heikes, R.P., Randall, D.A., Ringler, T.D. and Daescu, D., 2006. Initiation of ensemble data assimilation. Tellus A: Dynamic Meteorology and Oceanography, 58(2), pp.159–170. DOI: http://doi.org/10.1111/j.1600-0870.2006.00173.x
3
Views
1
Downloads
  Published on 01 Jan 2006
 Accepted on 31 Oct 2005            Submitted on 1 Feb 2005

References

  1. Anderson , J. L. 2001 . An ensemble adjustment Kalman filter for data assimilation . Mon. Weather Rev . 129 , 2884 – 2903 .  

  2. Anderson , J. L. 2003 . A local least squares framework for ensemble filtering . Mon. Weather Rev . 131 , 634 – 642 .  

  3. Anderson , J. L. , Wyman , B. , Zhang , S. and Hoar , T . 2005 . Assimilation of surface pressure observations using an ensemble filter in an idealized global atmospheric prediction system . J. Atmos. Sci . 62 , 2925 – 2938 .  

  4. Beccaria , M. and Curci , G. 1994 . Numerical simulation of the Kardar-Parisi-Zhang equation . Phys. Rev. E 50 , 4560 – 4563 .  

  5. Bishop , C. , Etherton , B. J. and Majumdar , S. J. 2001 . Adaptive sampling with the ensemble transform Kalman filter. Part I: theoretical aspects . Mon. Weather Rev . 129 , 420 – 436 .  

  6. Box , G. E. P. and Muller , M. E., 1958 . A note on the generation of random normal deviates . Ann. Math. Stat . 29 , 610 – 611 .  

  7. Brasseur , P. , Ballabrera , J. and Verron , J. 1999 . Assimilation of altimetric data in the mid-latitude oceans using the SEEK filter with an eddy-resolving primitive equation model . J. Marine Syst . 22 , 269 – 294 .  

  8. Dowell , D. C. , Zhang , E , Wicker , L. J. , Snyder , C. and Crook , N. A. 2004. Wind and temperature retrievals in the 17 May 1981 Arcadia, Okla-homa, supercell: ensemble Kalman filter experiments . Mon. Weather Rev . 132 , 1982 – 2005 .  

  9. Durran , D. R. 1991 . The third-order Adams-Bashforth method: an at-tractive alternative to leapfrog time differencing . Mon. Weather Rev . 119 , 702 – 720 .  

  10. Evensen , G. 1994 . Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics . J. Geophys. Res . 99 ( C5 ), 10143 – 10162 .  

  11. Evensen , G. 2003 . The ensemble Kalman filter: theoretical formulation and practical implementation . Ocean Dyn . 53 , 343 – 367 .  

  12. Gaspari , G. and Cohn , S. E. 1999 . Construction of correlation functions in two and three dimensions . Quart. J. Roy. Meteor. Soc . 125 , 723 – 757 .  

  13. Haltiner , G. J. and Williams , R. T. 1980 . Numerical Prediction and Dynamic Meteorology . 2nd Edition . Wiley & Sons , 477 pp .  

  14. Hamill , T. M. , Snyder , C. and Whitaker , J. S. 2003. Ensemble forecasts and the properties of flow-dependent analysis-error covariance singu-lar vectors . Mon. Weather Rev . 131 , 1741 – 1758 .  

  15. Haugen , V. E. J. and Evensen , G . 2002 . Assimilation of SLA and SST data into an OGCM for the Indian Ocean . Ocean Dyn . 52 , 133 – 151 .  

  16. Heikes , R. and Randall , D. A. 1995a . Numerical integration of the shallow-water equations on a twisted icosahedral grid. Part I: basic design and results of tests . Mon. Weather Rev . 123 , 1862 – 1880 .  

  17. Heikes , R. and Randall , D. A. 1995b . Numerical integration of the shallow-water equations on a twisted icosahedral grid. Part II: a detailed description of the grid and an analysis of numerical accu-racy . Mon. Weather Rev . 123 , 1881 – 1887 .  

  18. Houtekamer , P. L. and Mitchell , H. L. 1998 . Data assimilation using an ensemble Kalman filter technique . Mon. Weather Rev . 126 , 796 – 811 .  

  19. Houtekamer , P. L. and Mitchell , H. L. 2001 . A sequential ensemble Kalman filter for atmospheric data assimilation . Mon. Weather Rev . 129 , 123 – 137 .  

  20. Houtekamer , P. L. , Mitchell , H. L. , Pellerin , G. , Buehner , M. , Charron , M. , and co-authors. 2005. Atmospheric data assimilation with an en-semble Kalman filter: results with real observations . Mon. Weather Rev . 133 , 604 – 620 .  

  21. Janssen , H. K. , Tauber , U. C. and Frey , E. 1999 . Exact results for the Kardar-Parisi-Zhang equation with spatially correlated noise . Eur. Phys. J. B 9 , 491 – 511 .  

  22. Kardar , M. , Parisi , G. and Zhang , Y. C. 1986 . Dynamic scaling of growing interfaces . Phys. Rev. Lett . 56 , 889 – 892 .  

  23. Keppenne , C. L. 2000 . Data assimilation into a primitive-equation model with a parallel ensemble Kalman filter . Mon. Weather Rev . 128 , 1971 – 1981 .  

  24. Keppenne , C. L. and Rienecker , M. M. 2002 . Initial testing of massively-parallel ensemble Kalman filter with the Poseidon isopyc-nal ocean general circulation model . Mon. Weather Rev . 130 , 2951 – 2965 .  

  25. Lermusiaux , P. E J. and Robinson , A. R. 1999 . Data assimilation via error subspace statistical estimation. Part I: theory and schemes . Mon. Weather Rev . 127 , 1385 – 1407 .  

  26. Lopez , J. M. , Primo , C. , Rodriguez , M. A. and Szendro , I. G. 2004 . Scaling properties of growing noninfinitesimal perturbations in space-time chaos . Phys. Rev. E 70 , 056224 ( 5 ).  

  27. Lorenzo , M. N. , Santos , M. A. and Perez-Munuzuri , V. 2003 . Spatiotem-poral stochastic forcing effects in an ensemble consisting of arrays of diffusively coupled Lorenz cells . Chaos 13 , 913 – 920 .  

  28. Marinari , E. , Pagnani , A. , Parisi , G. and Racz , Z. 2002 . Width distribu-tions and the upper critical dimension of Karadar-Parisi-Zhang inter-faces . Phys. Rev. E 65 , 026136 .  

  29. Maunuksela , J. , Myllys , M. , Timonen , J. , Alava , M. J. and Ala-Nissila , T. 1999 . Kardar-Parisi-Zhang scaling in kinetic roughening of fire fronts . Physica A 266 , 372 – 376 .  

  30. Menard , R. , Cohn , S. E. , Chang , L.-P. and Lyster , P. M. 2000 . Assim-ilation of stratospheric chemical tracer observations using a Kalman filter. Part I: formulation. Mon. Weather Rev . 128 , 2654 – 2671 .  

  31. Mitchell , H. L. and Houtekamer , P. L., 2000 . An adaptive ensemble Kalman filter . Mon. Weather Rev . 128 , 416 – 433 .  

  32. Mitchell , H. L. , Houtekamer , P. L. and Pellerin , G. 2002 . Ensemble size, balance, and model-error representation in an ensemble Kalman filter . Mon. Weather Rev . 130 , 2791 – 2808 .  

  33. Newman , T. J. and Bray , A. J. 1996 . Strong-coupling behaviour in dis-crete Kardar-Parisi-Zhang equations . J. Phys. A . 29 , 7917 – 7928 .  

  34. Ott , E. , Hunt , B. R., Szunyogh , I. , Zimin , A. V. , Kostelich , E. J. , and co-authors 2004 . A local ensemble Kalman filter for atmospheric data assimilation . Tellus 56A ( 4 ), 273 – 277 .  

  35. Pham , D. T. , Verron , J. and Roubaud , M. C. 1998 . A singular evolu-tive extended Kalman filter for data assimilation in oceanography . J. Marine Syst . 16 , 323 – 340 .  

  36. Pikovsky , A. and Politi , A. 1998 . Dynamic localization of Lyapunov vectors in spacetime chaos . Nonlinearity 11 , 1049 – 1062 .  

  37. Reichle , R. H. , McLaughlin , D. B. and Entekhabi , D. 2002a. Hydrologic data assimilation with the ensemble Kalman filter. Mon. Weather Rev . 130 , 103 – 114 .  

  38. Reichle , R. H. , Walker , J. P., Koster , R. D. and Houser , P. R. 2002b. Extended versus ensemble Kalman filtering for land data assimilation. J. Hydrometorol . 3 , 728 – 740 .  

  39. Ringler , T. D. and Randall , D. A. 2002 . A potential enstrophy and en-ergy conserving numerical scheme for solution of the shallow-water equations on a geodesic grid . Mon. Weather Rev . 130 , 1397 – 1410 .  

  40. Snyder , C. and Zhang , E 2003 . Assimilation of simulated Doppler radar observations with an ensemble Kalman filter . Mon. Weather Rev . 131 , 1663 – 1677 .  

  41. Szunyogh , I. , Kostelich , E. J. , Gyarmati , G. , Patil , D. J. , Hunt , B. R. , and co-authors 2005 . Assessing a local ensemble Kalman filter: perfect model experiments with the NCEP global model” . Tellus 57A , 528 – 545 .  

  42. van Leeuwen , P. J. 2001 . An ensemble smoother with error estimates . Mon. Weather Rev . 129 , 709 – 728 .  

  43. Verma , M. K. 2000 . Intermittency exponents and energy spectrum of the Burgers and KPZ equations with correlated noise . Physica A 277 , 359 – 388 .  

  44. Whitaker , J. S. , Compo , G. P. , Wei , X. and Hamill , T. M. 2004 . Reanalysis without radiosondes using ensemble data assimilation . Mon. Weather Rev . 132 , 1190 – 1200 .  

  45. Whitaker , J. S. and Hamill , T. M. 2002 . Ensemble data assimilation without perturbed observations . Mon. Weather Rev . 130 , 1913 – 1924 .  

  46. Williamson , D. L. , Drake , J. B., Hack , J. J. , Jakob , R. and Swartztrauber , P. N. 1992 . A standard test set for numerical approximations to the shallow-water equations in spherical geometry . J. Comput. Phys . 102 , 221 – 224 .  

  47. Zhang , E , Snyder , C. and Sun , J. 2004. Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Weather Rev . 132 , 1238 – 1253 .  

  48. Zupanski , M. 2005 . Maximum likelihood ensemble Filter: theoretical aspects . Mon. Weather Rev . 133 , 1710 – 1726 .  

  49. Zupanski , D. and Zupanski , M. 2006 . Model error estimation employing ensemble data assimilation approach . Mon. Weather Rev ., in press .  

  50. Zupanski , M. , Zupanski , D. , Vukicevic , T. , Eis , K. and Vonder Haar , T. 2005 . CIRA/CSU four-dimensional variational data assimilation system. Mon. Weather Rev . 133 , 829 – 843 .  

comments powered by Disqus