Start Submission Become a Reviewer

Reading: Understanding the predictability of seasonal precipitation over northeast Brazil

Download

A- A+
Alt. Display

Original Research Papers

Understanding the predictability of seasonal precipitation over northeast Brazil

Author:

Vasubandhu Misra

Center for Ocean–Land–Atmosphere Studies, Institute of Global Environment and Society, Inc., 4041 Powder Mill Road, Suite 302, Calverton, MD 20705, US
X close

Abstract

Using multiple long-term simulations of the Center for Ocean—Land—Atmosphere Studies (COLA) atmospheric general circulation model (AGCM) forced with observed sea surface temperature (SST), it is shown that the model has high skill in simulating the February—March-April (FMA) rainy season over northeast Brazil (Nordeste). Separate sensitivity experiments conducted with the same model that entails suppression of all variability except for the climatological annual cycle in SST over the Pacific and Atlantic Oceans reveal that this skill over Nordeste is sensitive to SST anomalies in the tropical Atlantic Ocean. However, the spatial pattern of SST anomalies in the tropical Atlantic Ocean that correlate with FMA Nordeste rainfall are in fact a manifestation of El Niño Southern Oscillation (ENSO) phenomenon in the Pacific Ocean.

This study also analyzes the failure of the COLA AGCM in capturing the correct FMA precipitation anomalies over Nordeste in several years of the simulation. It is found that this failure occurs when the SST anomalies over the northern tropical Atlantic Ocean are large and not significantly correlated with contemporaneous SST anomalies over the eastern Pacific Ocean. In two of the relatively large ENSO years when the model failed to capture the correct signal of the interannual variability of precipitation over Nordeste, it was found that the meridional gradient of SST anomalies over the tropical Atlantic Ocean was inconsistent with the canonical development of ENSO. The analysis of the probabilistic skill of the model revealed that it has more skill in predicting flood years than drought. Furthermore, the model has no skill in predicting normal seasons. These model features are consistent with the model systematic errors.

How to Cite: Misra, V., 2006. Understanding the predictability of seasonal precipitation over northeast Brazil. Tellus A: Dynamic Meteorology and Oceanography, 58(3), pp.307–319. DOI: http://doi.org/10.1111/j.1600-0870.2006.00175.x
1
Views
  Published on 01 Jan 2006
 Accepted on 4 Nov 2005            Submitted on 31 Mar 2005

References

  1. Barnston , A. G. , Kumar , A. , Goddard , L. and Hoerling , M. P. 2005 . Improving seasonal prediction practices through attribution of climate variability . Bull. Amer Soc . 86 , 59 – 72 .  

  2. Brankovic , C. and Palmer , T. N. 1997 . Atmospheric seasonal predictabil-ity and estimates of ensemble size . Mon. Wea. Rev . 125 , 859 – 874 .  

  3. Chang , R , Saravanan , R. and Ji , L. 2003 . Tropical Atlantic seasonal pre-dictability: the roles of El Nino remote influence and thermodynamic air—sea feedback . Geophys. Res. Lett . 30 , 1501 – 1504 .  

  4. Chen , W. Y. and Dool Huug M. Van den 1997 . Atmospheric predictability of seasonal, annual, and decadal climate means and the role of the ENSO cycle: a model study. J. Climate 10 , 1236 – 1254 .  

  5. Chiang , J. C. H. , Kushnir , Y. and Giannini , A . 2002 . Deconstructing Atlantic ITCZ variability: influence of the local cross-equatorial SST gradient, and remote forcing from the eastern equatorial Pacific . J. Geophys. Res.-Atmospheres 107 ( D1 ), doi: https://doi.org/10.1029/2000JDO00307.  

  6. Curtis , S. and Hastenrath , S. 1995 . Forcing of anomalous sea surface temperature evolution in the tropical Atlantic during Pacific warm events . J. Geophys. Res . 100 , 15835 – 15847 .  

  7. Davies , R. 1982 . Documentation of the solar radiation parameterization in the GLAS climate model . NASA Tech. Mem . 83961 , 57 pp .  

  8. DeWitt , D. G. and Schneider , E. K. 1997 . The earth radiation budget as simulated by the COLA GCM . COLA Rep. 35, 39 pp. [Available from COLA, 4041 Powder Mill Rd., Suite 302, Calverton, MD 207051  

  9. Dirmeyer , P. A. and Zeng , F. J. 1999 . Precipitation infiltration in the simplified SiB land surface scheme . J. Meteor Soc. Japan 78 , 291 – 303 .  

  10. Enfield , D. B. and Mayer , D. A. 1997 . Tropical Atlantic sea surface temperature variability and its relation to El Nino Southern Oscillation . J. Geophys. Res . 102 , 929 – 945 .  

  11. Fennessy , M. J. , Kinter , J. L. BI , Kirtman , B. , Marx , L. , Nigam , S. , Schneider , E. K. , Shukla , J. , Straus , D. , Vernekar , A. , Xue , Y. and Zhou , J. 1994 . The simulated indian monsoon: a GCM sensitivity study. J. Climate 7 , 33 – 43 .  

  12. Folland , C. K. , Colman , A. W. , Rowell , D.P. and Davey , M. K. 2001 . Predictability of northeast Brazil rainfall and real-time forecast skill, 1987-98 . J. Climate 14 , 1937 – 1958 .  

  13. Goddard , L. , Barnston , A. G. and Mason , S. J. 2003 . Evaluation of the IRI’s ‘net assessment’ seasonal climate forecasts: 1997-2001 . Bull. Amer. Meteor. Soc . 84 , 1761 – 1781 .  

  14. Giannini , A. , Chang , J. C. H. , Cane , M. A. , Kushnir , Y., and Seager , R . 2001 . The ENSO teleconnection of the tropical Atlantic Ocean: contributions of the remote and local SSTs to rainfall variability in the tropical Americas . J. Climate 14 , 4530 – 4544 .  

  15. Giannini , A. , Saravanan , R. and Chang , P. 2004 . The precondition-ing role of tropical Atlantic variability in the development of the ENSO teleconnection: implications for the prediction of Nordeste rainfall . Clim. Dyn . 22 , doi: https://doi.org/10.1007/s00382-004-0420-2 , 839 – 855 .  

  16. Graham , R. J. , Evans , A. D. L., Mylne , K. R. , Harrison , M. S. J. and Robertson , K. B. 2000 . As assessment of seasonal predictability using atmospheric general circulation models . Quart. J. Roy. Meteor Soc . 126 , 2211 – 2240 .  

  17. Greischar , L. and Hastenrath , S. 2000 . The rainy seasons of the 1990s in northeast Brazil: real-time forecasts and verification . J. Climate 13 , 3821 – 3826 .  

  18. Harshvardhan , R. , Davies , R. , Randall , D. A. and Corsetti , T. G. 1987 . A fast radiation parameterization for atmospheric circulation models . J. Geophy. Res . 92 ( D1 ), 1009 – 1016 .  

  19. Hastenrath , S. and Heller , L. 1977 . Dynamics of climate hazards in northeast Brazil . Quart. J. Royal Meteor Soc . 103 , 77 – 92 .  

  20. Hastenrath , S. and Greischar , L. 1993 . Further work on the prediction of northeast Brazil rainfall anomalies . J. Climate 6 , 743 – 758 .  

  21. Hoerling , M. P. , Kumar , A. and Xu , T . 2001 . Robustness of the nonlinear climate response to ENSO’s extreme phases . J. Climate 14 , 3751 – 3766 .  

  22. Horel , J. D. and Wallace , J. M. 1981 . Planetary-scale atmospheric phe-nomena associated with the Southern Oscillation . Mon. Wea. Rev . 109 , 813 – 829 .  

  23. Kiehl , J. T. , Hack , J. J. , Bonan , G. , Boville , B. A. , Williamson , D. L. and Rasch , P. J. 1998 . The national center for atmospheric research community climate model: CCM3 . J. Climate 11 , 1131 – 1149 .  

  24. Kirtman , B. P. , Paolino , D. A. , Kinter , J. L. and Straus , D. M. 2001 . Im-pact of tropical subseasonal SST variability on seasonal mean climate simulations . Mon. Wea. Rev . 129 , 853 – 868 .  

  25. Kirtman , B. P. 2003 . The COLA anomaly coupled model: ensemble ENSO . Mon. Wea. Rev . 131 , 2324 – 2341 .  

  26. Lau , N.-C. and Nath , M. J. 1996 . The role of the ‘atmospheric bridge’ in linking tropical Pacific ENSO events to extratropical SST anomalies . J. Clim . 9 , 2036 – 2057 .  

  27. Mellor , G. L. and Yamada , T. 1982 . Development of a turbulence closure model for geophysical fluid processes . Rev. Geophys. Space Phys . 20 , 851 – 875 .  

  28. Misra , V. 2003 . The influence of Pacific SST variability on the precipi-tation over Southern Africa . J. Climate 16 , 2408 – 2418 .  

  29. Misra , V. 2004 . An evaluation of the predictability of austral sum-mer season precipitation over South America . J. Climate 17 , 1161 – 1175 .  

  30. Moorthi , S. and Suarez , M. J. 1992 . Relaxed Arakawa-Schubert: a pa-rameterization of moist convection for general circulation models . Mon. Wea. Rev . 120 , 978 – 1002 .  

  31. Moura , A. D. and Shukla , J. 1981 . On the dynamics of droughts in northeast Brazil: observations, theory and numerical experiments with a general circulation model . J. Atmos. Sci 38 , 3653 – 2675 .  

  32. Moura , A. D. and Hastenrath , S. 2004 . Climate prediction for Brazil’s Nordeste: performance of empirical and numerical modeling methods . J. Climate 17 , 2667 – 2672 .  

  33. Nobre , C. and Shukla , J. 1996 . Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America . J. Climate 9 , 2464 – 2479 .  

  34. Palmer , T. N. , Brankovic , C. and Richardson , D. S. 2000 . A probabil-ity and decision model analysis of PROVOST seasonal multi-model ensemble integrations . Quart. J. Roy. Meteor. Soc . 126 , 2013 – 2034 .  

  35. Parker , D. E. , Rayner , N. A. , Horton , E. B. and Folland , C. K. 1999 . Development of the Hadley Center sea ice and sea surface temper-ature data sets (HADISST). WMO workshop on Advances in Ma-rine Climatology-CLIMAR99 , 194 – 203 . [ Available from Environment Canada, Ontario ].  

  36. Raisanen , J. and Palmer , T. N. 2001 . A probability and decision model analysis of a multimodel ensemble of climate change simulations . J. Climate 14 , 3212 – 3226 .  

  37. Saravanan , R. and Chang , P. 2000 . Interaction between tropical Atlantic variability and El Nino southern oscillation . J. Climate 13 , 2177 – 2194 .  

  38. Seager , R. , Kushnir , Y. , Visbeck , M. , Naik , N. , Miller , J. , Krahmann , G. and Cullen , H. 2000 . Causes of Atlantic Ocean climate variability between 1958 and 1998 . J. Clim . 13 , 2845 – 2862 .  

  39. Sun , L. , Moncunill , D. F. , Li , H. , Moura , A. D. and Filho , F. A. S. 2005 . Climate downscaling over Nordeste, Brazil, using the NCEP R5M97 . J. Climate 18 , 551 – 564 .  

  40. Tiedtke , M. 1984 . The effect of penetrative cumulus convection on the large-scale flow in a general circulation model . Beitr Phys. Atmos . 57 , 216 – 239 .  

  41. Xie , P. and Arkin , P. 1996 . Analysis of global monthly precipitation using guage observations, satellite estimates and numerical model predictions . J. Climate 9 , 840 – 858 .  

  42. Xue , Y.-K. , Sellers , P. J. , Kinter , J. L. and Shukla , J. 1991 . A simplified biosphere model for global climate studies . J. Climate 4 , 345 – 364 .  

  43. Xue , Y.-K. , Zeng , F. J. and Schlosser , C. A. 1996 . SSiB and its sensitivity to soil properties. A case study using HAPEX-Mobilhy data . Glob. Planet. Change 13 , 183 – 194 .  

comments powered by Disqus