Anderson , J. L. 2001 . An ensemble adjustment Kalman filter for data assimilation . Mon. Wea. Rev . 129 , 2884 – 2903 .
Annan , J. D. and Hargreaves , J. C. 2004 . Efficient parameter estimation for a highly chaotic system . Tellus 56A , 520 – 526 .
Baer , E and Tribbia , J. J. 1977 . On complete filtering of gravity modes through nonlinear initialization. Mon. Wea. Rev . 105 , 1536 – 1539 .
Bell , M. J. , Martin , M. J. and Nichols , N. K. 2004 . Assimilation of data into an ocean model with systematic errors near the equator . Quart. J. Roy. Meteor. Soc . 130 , 873 – 893 .
Bishop , C. H. , Etherton , B. J. and Majumdar , S. J. 2001 . Adaptive sam-pling with the ensemble transform Kalman filter. Part I: Theoretical aspects . Mon. Wea. Rev . 129 , 420 – 436 .
Carton , J. A. , Chepurin , G. and Cao , X. 2000 . A simple ocean data assimilation analysis of the global upper ocean 1950-1995. Part I: Methodology . J. Phys. Oceanogr . 30 , 294 – 309 .
Cohn , S. E. 1997 . An introduction to estimation theory . J. Meteor. Soc. Japan 75 , 257 – 288 .
Daley , R. 1992 . The effect of serially correlated observation and model error on atmospheric data assimilation . Mon. Wea. Rev . 120 , 164 – 177 .
Dee , D. P. and Da Silva , A. M. 1998 . Data assimilation in the presence of forecast bias . Quart. J. Roy. Meteor. Soc . 124 , 269 – 295 .
Dee , D. P. and Todling , R. 2000 . Data assimilation in the presence of fore-cast bias: The GEOS moisture analysis . Mon. Wea. Rev . 128 , 3268 – 3282 .
Derber , J. C. 1989 . A variational continuous assimilation technique . Mon. Wea. Rev . 117 , 2437 – 2446 .
Etherton , B. J. and Bishop , C. H. 2004 . Resilience of hybrid ensem-ble/3DVAR analysis schemes to model error and ensemble covariance error . Mon. Wea. Rev . 132 , 1065 – 1080 .
Evensen , G. 1994 . Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics . J. Geophys. Res . 99C5 , 10 143 – 10 162 .
Friedland , B. 1969 . Treatment of bias in recursive filtering . IEEE Trans. Autom. Contr . 14 , 359 – 367 .
Ghil , M. , Cohn , S. , Tavantzis J. , Bube , K. and Isaacson , E. 1981 . Ap-plications of estimation theory to numerical weather prediction. In: Dynamic Meteorology: Data Assimilation Methods (eds. A. L. Bengts-son , M. Ghil , and E. Kallen ) Springer-Verlag, New York , 139 – 224 .
Hamill , T. M. and Snyder , C. 2000 . A hybrid ensemble kalman filter-3D variational analysis scheme . Men. Wea. Rev . 128 , 2905 – 2919 .
Hamill , T. M. , Whitaker , J. S. and Snyder , C. 2001 . Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter . Mon. Wea. Rev . 129 , 2776 – 2790 .
Hamill , T. M. and Whitaker , J. S. 2005 . Accounting for the error due to unresolved scales in ensemble data assimilation: A comparison of different approaches . Mon. Wea. Rev . 133 , 3132 – 3147 .
Hansen , J. A. 2002. Accounting for model error in ensemble-based state estimation and forecasting. Mon. Wea. Rev . 130 , 2373 – 2391 .
Houtekamer , P. L. and Mitchell , H. L. 1998 . Data assimilation using an ensemble kalman filter technique . Mon. Wea. Rev . 126 , 796 – 811 .
Houtekamer , P. L. and Mitchell , H. L. 2001 . A sequential ensemble kalman filter for atmospheric data assimilation . Mon. Wea. Rev . 129 , 123 – 137 .
Houtekamer , P. L. , Mitchell , H. L. , Pellerin , G. , Buehner , M. and Charron , M. , 2005. Atmospheric data assimilation with an ensem-ble kalman filter: Results with real observations. Mon. Wea. Rev . 133 , 604 – 620 .
Jazwinski , A. H. 1970 . Stochastic Processes and Filtering Theory . Aca-demic Press , San Diego .
Lorenz , E. N. and Emanuel , K. A. 1998 . Optimal sites for supplementary weather observations: Simulation with a small model . J. Atmos. Sci . 55 , 399 – 414 .
Lynch , P. and Huang , X.-Y. 1992 . Initialization of the HIRLAM model using a digital filter . Mon. Wea. Rev . 120 , 1019 – 1034 .
Lynch , P. 1997 . The Dolph-Chebyshev window: A simple optimal filter . Mon. Wea. Rev . 125 , 655 – 660 .
Machenhauer , B. 1977 . On the dynamics of gravity oscillations in a shallow water model with applications to normal mode initialization . Contrib. Atmos. Phys . 50 , 253 – 271 .
Margolin , L. G. , Titi , E. S. and Wynne , S. 2003 . The postprocess-ing Galerkin and nonlinear Galerkin methods-A truncation analysis point of view . SIAM J. Numer. Anal . 41 , 695 – 714 .
Martin , M. J. , Bell , M. J. and Nichols , N. K. 2002 . Estimation of system-atic error in an equatorial ocean model using data assimilation. Int. J. Numer. Meth. Fluids 40 , 435 – 444 .
Ott , E. , Hunt , B. R. , Szunyogh , I. , Zimin , A. V. and Kostelich , E. J. 2004a. A local ensemble Kalman filter for atmospheric data assimilation. Tellus 56A , 415 – 428 .
Ott , E. , Hunt , B. R. , Szunyogh , I. , Zimin , A. V. and Kostelich , E. J. 2004b. Estimating the state of large spatio-temporally chaotic systems. Phys. Lett. A 330 , 365 – 370 .
Szunyogh , I. , Kostelich , E. J. , Gyarmati , G. , Patil , D. J. and Hunt , B. R. 2005 . Assessing a local ensemble Kalman filter: Perfect model experiments with the NCEP global model. Tellus 57A , 528 – 545 .
Whitaker , J. S. and Hamill , T. M. 2002 . Ensemble data assimilation without perturbed observations. Mon. Wea. Rev . 130 , 1913 – 1924 .
Whitaker , J. S. , Compo , G. P. , Wei , X. and Hamil T. M. 2004 . Reanalysis without radiosondes using ensemble data assimilation . Mon. Wea. Rev . 132 , 1190 – 1200 .
Zupanski , D. 1997 . A general weak constraint applicable to operational 4DVAR data assimilation systems . Mon. Wea. Rev . 125 , 2274 – 2292 .