Start Submission Become a Reviewer

Reading: Thermobaric effect on slantwise convection in cold seawater

Download

A- A+
Alt. Display

Original Research Papers

Thermobaric effect on slantwise convection in cold seawater

Authors:

Jan Erik H. Weber ,

Department of Geosciences, University of Oslo, NO
X close

Terje Brinck Løyning

Norwegian Polar Institute, Tromsø, NO
X close

Abstract

A theoretical investigation shows that the pressure dependence of the thermal expansion coefficient (the thermobaric effect) acts to destabilize stratified geostrophic flows when both temperature and salinity contribute positively to the vertical stability. For vertical stability where the salinity contributes negatively, the thermobaric effect may act to stabilize the flow. The considered disturbances are small-amplitude two-dimensional rolls with axes aligned along the basic geostrophic current, and the growth mechanism is symmetric baroclinic instability. The boundaries of the marginally stable convection cells are essentially parallel to the slanting isopycnals of the basic state; therefore, the term slantwise convection is used to describe this phenomenon. Furthermore, the thermobaric effect induces a shift of the centres of the convection cells towards the lower part of the fluid layer, as previously demonstrated for buoyancy-driven convection. The width of the marginally stable cells is small and determined by turbulent diffusion processes in the fluid.

How to Cite: Weber, J.E.H. and Løyning, T.B., 2006. Thermobaric effect on slantwise convection in cold seawater. Tellus A: Dynamic Meteorology and Oceanography, 58(3), pp.385–391. DOI: http://doi.org/10.1111/j.1600-0870.2006.00179.x
  Published on 01 Jan 2006
 Accepted on 24 Nov 2005            Submitted on 23 May 2005

References

  1. Aagard K. , Swift , J. H. and Carmack E. 1985 . Thermohaline circulation in the Arctic Mediterranean Seas . J. Geophys. Res . 90 , 4833 – 4846 .  

  2. Akitomo K. 1999a . Open-ocean deep convection due to thermobaricity. 1. Scaling argument . J. Geophys. Res . 104 , 5225 – 5234 .  

  3. Akitomo K. 1999b . Open-ocean deep convection due to thermobaricity. 2. Numerical experiments . J. Geophys. Res . 104 , 5225 – 5234 .  

  4. Allen , J. S. and Newberger , P. A. 1996 . Downwelling circulation on the Oregon Continental Shelf. Part I: response to idealizes forcing . J. Phys. Oceanogr 26 , 2011 – 2035 .  

  5. Allen , J. S. and Newberger , P. A. 1998 . On symmetric instabilities in oceanic bottom boundary layers . J. Phys. Oceanogr 28 , 1131 – 1151 .  

  6. Eliassen A. and Kleinschmidt E. 1957 . Dynamic Meteorology. In: Hand- buch der Physik (ed S. Flagge). Springer-Verlag, Berlin , 1 – 154 .  

  7. Emanuel , K. A. 1979 . Inertial instability and mesoscale convective sys-tems. part I: linear theory of inertial instability in rotating viscous fluids . J. Atmos. Sci . 36 , 2425 – 2449 .  

  8. Emanuel , K. A. 1994 . Atmospheric Convection . Oxford University Press , Oxford .  

  9. Finlayson , B. A. 1972 . The Method of Weighted Residuals and Varia-tional Principles with Application in Fluid Mechanics, Heat and Mass Transfer . Academic Press , New York .  

  10. Garwood Jr. , R. , Isakari S , and Gallacher P. 1994 . Thermobaric convec-tion. In: The Polar Oceans and Their Role in Shaping the Global Environment , Geophys. Monogr. Ser. 85 (eds O. M. Johannesen , R. D. Muench and J. E. Overland ), AGU, Washington, D.C. , 199 – 209 .  

  11. Gill , A. E. 1973 . Circulation and bottom water production in the Weddel Sea . Deep-Sea Res . 20 , 111 – 140 .  

  12. Gill , A. E. 1982 . Atmosphere-Ocean Dynamics . Academic Press , New York .  

  13. Hoskins , B. J. 1974 . The role of potential vorticity in symmetric stability and instability . Quart. J. Roy. Meteor. Soc . 100 , 480 – 482 .  

  14. Killworth , P. D. 1977 . Mixing on the Weddel Sea continental slope . Deep-Sea Res . 24 , 427 – 448 .  

  15. Killworth , P. D. 1979 . On “chimney” formations in the ocean. J. Phys. Oceanogr 9 , 531 – 553 .  

  16. Løyning , T. B. and Weber , J. E. 1977 . Thermobaric effects on buoyancy-driven convection in cold seawater. J. Geophys. Res . 102 , 27.874 – 27.885 .  

  17. McDougal , T. J. 1984 . The relative roles of diapycnal and isopycnal mixing on subsurface water mass conversion , J. Phys. Oceanogr 14 , 1577 – 1589 .  

  18. McDougal , T. J. 1987a . Neutral surfaces . J. Phys. Oceanogr 17 , 1950 – 1964 .  

  19. McDougal , T. J. 1987b . Thermobaricity, cabbeling and water-mass con-version . J. Geophys. Res . 92 , 5448 – 5464 .  

  20. Ooyama K. 1966 . On the stability of the baroclinic circular vortex: a sufficient criterion for instability . J. Atmos. Sci . 23 , 43 – 53 .  

  21. Stone , P. H. 1966 . On non-geostrophic baroclinic instability . J. Atmos. Sci . 23 , 390 – 400 .  

  22. Torkildsen , F. and Haugan , P.M. 1999 . Modelling of deep water renewal through cold convective plumes. Deep Sea Res. 11 46 , 1357 – 1383 .  

  23. Walton , I. C. 1975 . The viscous nonlinear symmetric baroclinic instability of a zonal shear flow . J. Fluid Mech . 68 , 757 – 768 .  

  24. Weber , J. E. 1980 . Symmetric instability of stratified geostrophic flow . Tellus 32 , 176 – 185 .  

comments powered by Disqus