Start Submission Become a Reviewer

Reading: Radar-based precipitation type analysis in the Baltic area

Download

A- A+
Alt. Display

Original Research Papers

Radar-based precipitation type analysis in the Baltic area

Authors:

Andi Walther ,

Institut für Weltraumwissenschaften, Freie Universität Berlin, 12165 Berlin, DE
X close

Ralf Bennartz

Institut für Weltraumwissenschaften, Freie Universität Berlin, 12165 Berlin, DE; Department of Atmospheric and Oceanic Sciences, University of Wisconsin, Madison, Wisconsin, 53706, US
X close

Abstract

A method to classify precipitation events based on their spatial extent and texture has been developed and applied to 3 yr of BALTEX Radar Data Center weather radar composites over the Baltic region. The method is capable of distinguishing large-scale precipitation features typically associated with frontal systems from more small-scale features, which are usually found in convective systems. Data used for this study are 2-D radar images. The classification is performed in three steps. First, contiguous precipitation areas are identified in the radar data. In the second step, each of these areas is subjected to an analysis where different texture parameters are calculated. In a third step, these texture parameters are evaluated by means of a neural network, and a type of precipitation is assigned to each class. The neural network has been trained using a large set of visually classified radar scenes. A validation of the results has been performed by (1) comparing regions where U.K. Met Office analysis shows large contiguous frontal areas and (2) by using surface observations where the surface observer reported precipitation events that could clearly be associated either with intermittent convective precipitation or with frontal systems. The results of the different comparisons are generally in good agreement with each other, and the false classification rate ranges from 10% to 20%.

The application to 3 yr of radar data has resulted in estimation of the frontal fraction of precipitation in the Baltic Sea area. About two-thirds of overall precipitation events are determined by frontal passages with high seasonal and diurnal variations.

How to Cite: Walther, A. and Bennartz, R., 2006. Radar-based precipitation type analysis in the Baltic area. Tellus A: Dynamic Meteorology and Oceanography, 58(3), pp.331–343. DOI: http://doi.org/10.1111/j.1600-0870.2006.00183.x
  Published on 01 Jan 2006
 Accepted on 19 Dec 2005            Submitted on 9 Aug 2005

References

  1. Anagnostou , N. E. and Kummerow , C. 1997 . Stratiform and convective classification of rainfall using ssmn 85-Ghz brightness temperature observations . J. Atmos. Oceanic TechnoL 14 , 570 – 575 .  

  2. Appleman , H. S. 1960 . A fallacy in the use of skill scores . Bull. Amer Meteor . 41 , 64 – 67 .  

  3. Biggerstaff , M. and Listemaa , S. 2000 . An improved scheme for con-vective/stratiform echo classification using radar reflectivity . Journal of Applied Meteorology 39 , 2129 – 2150 .  

  4. Brier , G. W. and Allen , R. A. 1952 . Verification of weather forecasts . In: Compendium of Meteorology , Amer Meteor Soc. Boston , 841 – 848 .  

  5. Hanssen , A. W. and Kuipers , W. 1965 . On the relationship between the frequency of rain and various meteorological parameters. Koninklijk Nederlands Meteorologisch Institut . Meded. Verhand . 81 , 2 – 15 .  

  6. Heidke , P. 1926 . Berechnung des Erfolges und der Giite der Windstärkevorhersagen im Sturmwarnungsdienst . Geogr Ann . 8 , 301 – 349 .  

  7. Marquard , A. 1963 . An algorithm for least-squares estimation of non-liniear parameters . SIAM J. AppL Math . 11 , 413 – 441 .  

  8. Michelson , D. , Andersson , T. , Koistinen , J. , Collier , C. , Riedl , J. and co-authors , 2000 . BALTEX Radar DATA Centre Products and their Methodologies. Technical Report RMK 90, SMHI, SE-60176 Norrkoping, Sweden .  

  9. Pankiewicz , G. S. 1997 . Neural network classification of convective air masses for a flood forecating system . Int. J. Remote Sensing 18 , 887 – 898 .  

  10. Rumelhart , D. and McClelland , J. 1986 . Parallel Distributed Processing Vol. I . Cambridge , MA , MIT press , 547 pp .  

  11. Schowengerdt , R., 1997 . Remote sensing , models and methods for image processing. Academic press , 522 pp .  

  12. Shepherd , G. W. , Cluckie , I. D. , Collier , C. G. , Yu , S. and James , P. K. 1988 . The identification of rainfall type from weather radar data . Meteorological Magazine 117 , 180 – 186 .  

  13. Skomorowski , R , Clemens , M. , Bumke , K. , Rudolf , B. and Rubel , F. 2003 . Observed precipitation climatology for the Baltic . Geophysical Research Abstracts 5 , 10 133 .  

  14. Steiner , M. , Houze , R. A. Jr. and Yuter , S. 1995 . Climatological char-acterizations of three-dimensional storm structure from operational radar and rain gauge data . Journal of Applied Meteorology 34 , 1978 – 2007 .  

  15. Sumner , G. N. 1988 . Precipitation: Process and Analysis . John Wiley & Sons Ltd ., New York , 455 pp .  

  16. Tetzlaff , G. and Hagemann , N. 1986 . Bemerkungen zum Niederschlag in Hannover . Meteorologische Rundschau 39 , 1 – 12 .  

  17. Tian , B. , Shaikh , M. A. , Azimi-Sadjadi , M. R. , Vonder Haar , T. H. and Reinke , D. L. 1999 . A study of cloud classification with neural net-works using spectral and textural features . IEEE Transactions on Neu-ral Networks 10 ( 1 ), 138 – 151 .  

  18. Uddstrom , M. J. and Gray , W. 1995 . Satellite cloud classification and rain-rate estimation using multispectral radiances and measures of spatial texture. Journal of Applied Meteorology 35 , 839 – 858 .  

  19. Woodcok , E 1976 . The Evaluation of Yes/No Forecasts for Scientific and Administrative Purposes . Monthly Weather Review 104 , 1209 – 1214 .  

comments powered by Disqus