Start Submission Become a Reviewer

Reading: Adaptive observations and assimilation in the unstable subspace by breeding on the data-assi...

Download

A- A+
Alt. Display

Original Research Papers

Adaptive observations and assimilation in the unstable subspace by breeding on the data-assimilation system

Authors:

Alberto Carrassi ,

ISAC-CNR, Bologna; Dept. of Physics, University of Ferrara, IT
X close

Anna Trevisan,

ISAC-CNR, Bologna, IT
X close

Francesco Uboldi

Novate Milanese, IT
X close

Abstract

Results of targeting and assimilation experiments in a quasi-geostrophic atmospheric model are presented and discussed. The basic idea is to assimilate observations in the unstable subspace (AUS) of the data-assimilation system. The unstable subspace is estimated by breeding on the data-assimilation system (BDAS). The analysis update has the same local structure as the observationally forced bred modes.

Use of adaptive observations, taken at locations where bred vectors have maximum amplitude, enhances the efficiency of the procedure and allows the use of a very limited number of observations and modes. The performance of the targeting and assimilation design is tested in an idealized context, under perfect model conditions. It is shown that the process of driving the control solution toward the true trajectory accomplished by the assimilation reduces the number and growth of unstable modes. By observing and assimilating the unstable structures it is then possible to stabilize the assimilation system so that few observations are sufficient to keep the analysis error within very low bounds, even in the presence of observational noise.

In an idealized limited area model configuration the number and frequency of observations necessary to control the system is shown to be related to the properties of its unstable subspace.

How to Cite: Carrassi, A., Trevisan, A. and Uboldi, F., 2007. Adaptive observations and assimilation in the unstable subspace by breeding on the data-assimilation system. Tellus A: Dynamic Meteorology and Oceanography, 59(1), pp.101–113. DOI: http://doi.org/10.1111/j.1600-0870.2006.00210.x
  Published on 01 Jan 2007
 Accepted on 3 Sep 2006            Submitted on 11 Jan 2006

References

  1. Benettin , G. , Galgani , L. , Giorgilli , A. and Strelcyn , J. M. 1980 . Lya-punov characteristic exponents for smooth dynamical system and for Hamiltonian system; a method for computing them. Meccanica 15 , Part I: theory 9-20—Part II: application 21 - 30 .  

  2. Bleck , R., 1978 . Simulation of coastal upwelling frontogenesis with an isopycnic coordinate model . J. Geophys. Res . 83C , 6163 – 6172 .  

  3. Corazza , M. , Kalnay , E. , Patil , D. J. , Yang , S. C. , Morss , R. and co-authors. 2003. Use of the breeding technique to estimate the structure of the analysis ‘error of the day’ . Nonlin. Processes Geophys . 10 , 233 - 243 .  

  4. Daley , R. 1991 . Atmospheric Data Analysis , Cambridge University Press , Cambridge , 457 pp .  

  5. Fourrié , N. , Marchal , D. , Rabier , E. and Chapnik Desroziers , G. 2006 . Impact study of the 2003 north Atlantic THORPEX regional campaign. Quart. J. Roy. Meteorol. Soc . 132 , 275 - 295 .  

  6. Ghil , M. and Todling , R. 1996 . Tracking atmospheric instabilities with the Kalman filter. Part II: Two-layer results. Mon. Wea. Re v . 124 , 2340 – 2352 .  

  7. Ghil , M. 1997 . Advances in sequential estimation for atmospheric and oceanic flows . J. Meteorol. Soc. Japan 75 , 289 – 304 .  

  8. Hamill , T. M. and Snyder , C. 2000 . A hybrid ensemble Kalman filter-3D-variational analysis scheme. Mon. Wea. Re v . 128 , 2905 – 2919 .  

  9. Hamill , T. M. and Snyder , C. 2002 . Using improved background-error covariances from an ensemble Kalman filter for adaptive observations. Mon. Wea. Re v . 130 , 1552 – 1572 .  

  10. Hamill , T. M. , Snyder , C. and Morss , R. E. 2002 . Analysis-error statistics of a quasigeostrophic model using three-dimensional variational assimilation. Mon. Wea. Re v . 130 , 2777 – 2790 .  

  11. Ide , K. , Courtier , P. , Ghil , M. and Lorenc , A. C. 1997 . Unified notation for data-assimilation: Operational, sequential and variational . J. Meteorol. Soc. Japan 75 , 181 – 189 .  

  12. Kalnay , E. 2003 . Atmospheric Modelling, Data Assimilation and Predictability , Cambridge University Press , Cambridge , 341 pp .  

  13. Legras , B. and Vautard , R. 1996 . A guide to Lyapunov vectors. In: Pre-dictability Volume 1, Seminar Proceedings , ECMWF, Reading , UK , pp. 143 - 156 .  

  14. Lorenz , E. N. 1984 . The local structure of a chaotic attractor in four dimensions . Physica 13D , 90 – 104 .  

  15. Lorenz , E. N. 1996 . Predictability: a problem partly solved. In: Pre-dictability Volume 1, Seminar Proceedings , ECMWF, Reading , UK , pp. 1 - 18 .  

  16. Lorenz , E. N. and Emanuel , K. A. 1998 . Optimal sites for supplementary weather observations: Simulation with a small model. J. Atmos. Sc i . 55 , 399 – 414 .  

  17. Morss , R. E. 1999 . Idealized sampling strategies for improving numerical weather prediction. PhD Thesis, Massachussets Institute of Technology, Cambridge, MA. Available from UMI Dissertation Services, 300 N.Zeeb Rd ., Ann Arbor, MI 48106 , 225 pp .  

  18. Morss , R. E. , Emanuel , K. A. and Snyder , C. 2001 . Idealized adaptive observation strategies for improving numerical weather prediction. J. Atmos. Sc i . 58 , 210 – 232 .  

  19. Oseledec , V. I. 1968 . A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems . Trans. Moscow Math. Soc . 19 , 197 – 231 .  

  20. Parrish , D. E and Derber , J. D. 1992 . The National Meteorological Center spectral statistical interpolation analysis system. Mon. Wea. Re v . 120 , 1747 – 1763 .  

  21. Pires , C. , Vautard , R. and Talagrand , O. 1996 . On extending the limits of variational assimilation in chaotic systems . Tellus 48A , 96 – 121 .  

  22. Rotunno , R. and Bao , J. W. 1996 . A case study of cyclogenesis using a model hierarchy. Mon. Wea. Re v . 124 , 1051 – 1066 .  

  23. Snyder , C. and Hamill , T. M. 2003 . Leading Lyapunov Vectors of a Turbulent Baroclinic Jet in a Quasigeostrophic Model. J. Atmos. Sc i . 60 , 683 – 688 .  

  24. Szunyogh , I. , Toth , Z. , Zimin , A. V. , Majumdar , S. J. and Persson , A. 2002 . Propagation of the effect of targeted observations: the 2000 Winter Storm Reconnaissance Program. Mon. Wea. Re v . 130 , 1144 – 1165 .  

  25. Talagrand , O. 1997 . Assimilation of observations, an introduction . J. Meteorol. Soc. Japan 75 , 191 – 209 .  

  26. Todling , R. and Ghil , M. 1994 . Tracking atmospheric instabilities with the Kalman filter. Part I: Methodology and one-layer results. Mon. Wea. Re v . 122 , 183 – 204 .  

  27. Toth , Z. and Kalnay , E. 1993 . Ensemble forecasting at NMC: The generation of perturbations . Bull. Amer. Meteorol. Soc . 74 , 2317 – 2330 .  

  28. Toth , Z. and Kalnay , E. 1997 . Ensemble forecasting at NCEP: the breeding method. Mon. Wea. Re v . 125 , 3297 – 3318 .  

  29. Trevisan , A. and Pancotti , E 1998 . Periodic orbits, Lyapunov vectors and singular vectors in the Lorenz system. J. Atmos. Sc i . 55 , 390 – 398 .  

  30. Trevisan , A. and Uboldi , E 2004 . Assimilation of Standard and Tar-geted Observations within the Unstable Subspace of the Observation-Analysis-Forecast Cycle System. J. Atmos. Sc i . 61 , 103 – 113 .  

  31. Uboldi , E , Trevisan , A. and Carrassi , A. 2005 . Developing a dynamically based assimilation method for targeted and standard observations . Nonlin. Processes Geophys . 12 , 149 – 156 .  

  32. Uboldi , E and Trevisan , A . 2006 . Detecting unstable structures and con-trolling error growth by assimilation of standard and adaptive observa-tions in a primitive equation ocean model . Nonlin. Processes Geophys . 13 , 67 – 81 .  

  33. Vannitsem , S. 2003 . Intrinsic error growth in a large-domain eta regional model. Mon. Wea. Re v . 131 , 2697 – 2704 .  

  34. Wang , X. and Bishop , C. H. 2003 . A comparison of breeding and en-semble transform Kalman filter ensemble forecast scheme. J. Atmos. Sc i . 60 , 1140 – 1158 .  

comments powered by Disqus