Start Submission Become a Reviewer

Reading: An adaptive covariance inflation error correction algorithm for ensemble filters

Download

A- A+
Alt. Display

Original Research Papers

An adaptive covariance inflation error correction algorithm for ensemble filters

Author:

Jeffrey L. Anderson

NCAR Data Assimilation Research Section, P.O. Box 3000, Boulder, CO 80307-3000, US
X close

Abstract

Ensemble filter methods for combining model prior estimates with observations of a system to produce improved posterior estimates of the system state are nowbeing applied to a wide range of problems both in and out of the geophysics community. Basic implementations of ensemble filters are simple to develop even without any data assimilation expertise. However, obtaining good performance using small ensembles and/or models with significant amounts of error can be more challenging.Anumber of adjunct algorithms have been developed to ameliorate errors in ensemble filters. The most common are covariance inflation and localization which have been used in many applications of ensemble filters. Inflation algorithms modify the prior ensemble estimates of the state variance to reduce filter error and avoid filter divergence. These adjunct algorithms can require considerable tuning for good performance, which can entail significant expense. A hierarchical Bayesian approach is used to develop an adaptive covariance inflation algorithm for use with ensemble filters. This adaptive error correction algorithm uses the same observations that are used to adjust the ensemble filter estimate of the state to estimate appropriate values of covariance inflation. Results are shown for several low-order model examples and the algorithm produces results that are comparable with the best tuned inflation values, even for small ensembles in the presence of very large model error.

How to Cite: Anderson, J.L., 2007. An adaptive covariance inflation error correction algorithm for ensemble filters. Tellus A: Dynamic Meteorology and Oceanography, 59(2), pp.210–224. DOI: http://doi.org/10.1111/j.1600-0870.2006.00216.x
  Published on 01 Jan 2007
 Accepted on 14 Oct 2006            Submitted on 20 Mar 2006

References

  1. Anderson , J. L. 2001 . An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Re v . 129 , 2894 – 2903 .  

  2. Anderson , J. L. 2003 . A local least squares framework for ensemble filtering. Mon. Wea. Re v . 131 , 634 – 642 .  

  3. Anderson , J. L. 2007 . Exploring the need for localization in ensemble data assimilation using an hierarchical ensemble filter . Physica D , in press .  

  4. Anderson , J. L. and Anderson , S. L. 1999 . A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Re v . 127 , 2741 – 2758 .  

  5. Buizza , R. , Miller , M. and Palmer , T. N. 1999 . Stochastic representation of model uncertainties in the ECMWF ensemble prediction system . Quart. J. Roy. Meteor Soc . 125 , 2887 – 2908 .  

  6. Burgers , G. , Leeuwen , P. J. van and Evensen G. 1998 . Analysis scheme in the ensemble Kalman filter. Mon. Wea. Re v . 126 , 1719 – 1724 .  

  7. Chui , C. K. and Chen G. 1987 . Kalman Filtering , Springer, Berlin .  

  8. Courtier , P. , Thepaut J.-N. and Hollingsworth A. 1994 . A strategy for operational implementation of 4D-var using an incremental approach . Quart. J. Roy. Meteor Soc . 120 , 136701387 .  

  9. Daley , R. 1993 . Estimating the observation error statistics for atmo-spheric data assimilation . Ann. Geophys . 11 , 634 – 647 .  

  10. Dee , D. P. 1995 . On-line estimation of error covariance parameters for atmospheric data assimilation. Mon. Wea. Re v . 123 , 1128 – 1145 .  

  11. Dee , D. P. and da Silva , A. M. 1999 . Maximum-likelihood estimation of forecast and observation error covariance parameters. Part I: method-ology. Mon. Wea. Re v . 127 , 1822 – 1834 .  

  12. Dee , D. P. and Todling R. 2000 . Data assimilation in the presence of forecast bias: the GEOS moisture analysis. Mon. Wea. Re v . 128 , 3268 – 3282 .  

  13. Dee , D. P. , Gaspari , G. , Redder , C. , Rukhovets , L. and da Silva , A. M. 1999 . Maximum-likelihood estimation of forecast and observation error covariance parameters. Part II: applications. i>Mon . Wea. Re v . 127 , 1835 – 1849 .  

  14. Derber , J. C. 1989 . A variational continuous assimilation technique. Mon. Wea. Re v . 117 , 2437 – 2446 .  

  15. Derber , J. C. , Parrish , D. E and Lord , S. J. 1991 . The new global operational analysis system at the National Meteorological Center . Wea. Forecasting 6 , 538 – 547 .  

  16. Evensen , G., 1994 . Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to do forecast error statistics. J. Geophys . Res . 99 ( C5 ), 10143 – 10162 .  

  17. Eyre , J. R. , Kelly , G. A. , McNally , A. P. , Andersson , E. and Persson A. 1993 . Assimilation of TOVS radiance information through one-dimensional variational analysis . Quart. J. Roy. Meteor Soc . 119 , 1427 – 1463 .  

  18. Furrer , R. and Bengtsson T. 2006 . Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants . J. Multi-variate Anal 98 , 227 – 255 .  

  19. Gaspari , G. and Cohn , S. E. 1999 . Construction of correlation functions in two and three dimensions . Quart. J. Roy. Meteor Soc . 125 , 723 – 757 .  

  20. Geiring , R. , Kaminski , T. and Slawig T. 2005 . Generating efficient derivative code with TAF: adjoint and tangent linear Euler flow around an airfoil . Future Generation Comp. SysL 21 , 1345 – 1355 .  

  21. Hamill , T. M. and Whitaker , J. S. 2004 . Accounting for error due to unresolved scales in ensemble data assimilation: a comparison of different approaches. Mon. Wea. Re v . 133 , 3132 – 3147 .  

  22. Hamill , T. M. , Whitaker , J. S. and Snyder C. 2001 . Distance-dependent filtering of background-error covariance estimates in an ensemble Kalman filter. Mon. Wea. Re v . 129 , 2776 – 2790 .  

  23. Hansen , J. A. 2002 . Accounting for model error in ensemble-based state estimation and forecasting. Mon. Wea. Re v . 130 , 2373 – 2391 .  

  24. Houtekamer , P. L. and Mitchell , H. L. 1998 . Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Re v . 126 , 796 – 811 .  

  25. Houtekamer , P. L. , and Mitchell , H. L. 2001 . A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Re v . 129 , 123 – 137 .  

  26. Houtekamer , P. L. , Mitchell , H. L. Pellerin G. Buehner M. Charron M ., and co-authors. 2004. Atmospheric data assimilation with the ensemble Kalman filter: results with real observations. Mon. Wea. Rev . 133 , 604 - 620 .  

  27. Jazwinski , A. H. 1970 . Stochastic Processes And Filtering Theory . Academic Press , New York , 376 pp .  

  28. Kalman , R. E., 1960 . A new approach to linear filtering and prediction problems . Trans. AMSE J. Basic Eng . 82D , 35 – 45 .  

  29. Keppenne , C. L. and Rienecker , M. M. 2002 . Initial testing of a massively parallel ensemble Kalman filter with the Poseidon isopycnal ocean general circulation model. Mon. Wea. Re v . 130 , 2951 – 2965 .  

  30. Kistler , R. , Collins W. Saha S. White , G. and Woolen J. 2001 . The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull. Amer. Met. Soc . 82 , 247 - 267 .  

  31. Le Dimet , F. X. and Talagrand O. 1986 . Variational algorithms for analysis and assimilation of meteorological observations . Tellus 38A , 97 – 110 .  

  32. Li , Z. and Navon , I. M. 2001 . Optimality of variational data assimilation and its relationship with the Kalman filter and smoother . Quart. J. Roy. Meteor Soc . 127 , 661 – 683 .  

  33. Lorene , A. C., 2003 . The potential of the ensemble Kalman filter for NVVP . Quart. J. Roy. Meteor Soc . 129 , 3183 – 3204 .  

  34. Lorenz , E. N., 1996 . Predictability: a problem partly solved. Proc. ECMWF Seminar on Predictability, Vol. 1 , Reading, United Kingdom, ECMWF , 1 - 18 .  

  35. Lorenz , E. N. and Emanuel , K. A. 1998 . Optimal sites for supplementary weather observations: simulation with a small model. J. Atmos. Sc i . 55 , 399 – 414 .  

  36. Mellor , G. L. and Yamada T. 1982 . Development of a turbulent closure model for geophysical fluid problems . Rev. Geophys. Space Phys . 20 , 851 – 875 .  

  37. Mitchell , H. L. and Houtekamer , P. L. 2000 . An adaptive ensemble Kalman filter. Mon. Wea. Re v . 128 , 416 – 433 .  

  38. Mitchell , H. L. , Houtekamer , P. L. and Pellerin G. 2002 . Ensemble size, balance, and model-error representation in an ensemble Kalman filter. Mon. Wea. Re v . 130 , 2791 – 2808 .  

  39. Ott , E. , Hunt B. , Szunyogh , I. , Zimin , A., Kostelich , and co-authors . 2004. A local ensemble Kalman filter for atmospheric data assimilation. Tellus 56A , 415 - 428 .  

  40. Pham , D. T. 2001 . Stochastic methods for sequential data assimilation in strongly non-linear systems. Mon. Wea. Re v . 129 , 1194 – 1207 .  

  41. Rabier , F. , Jarvinen , H. , Klinker , E. , Mahfouf , J. F. and Simmons A. 2000 . The ECMWF operational implementation of four-dimensional variational assimilation. I: experimental results with simplified physics . Quart. J. Roy. Meteor Soc . 126 , 1148 – 1170 .  

  42. Talagrand , O. and Courtier P. 1987 . Variational assimilation of meteoro-logical observations with the adjoint vorticity equation. Part I: theory . Quart. J. Roy. Meteor. Soc . 113 , 1311 – 1328 .  

  43. Tippett , M. K. , Anderson , J. L. Bishop , C. H. Hamill , T. M. and Whitaker , J. S. 2003 . Ensemble square root filters. Mon. Wea. Re v . 131 , 1485 – 1490 .  

  44. Uppsala , S. M. and 45 contributing authors 2005. The ERA-40 re-analysis. Quart. J. Roy. Meteor Soc . 131 , 2961-301 2 .  

  45. Whitaker , J. S. and Hamill , T. M. 2002 . Ensemble data assimilation without perturbed observations. Mon. Wea. Re v . 130 , 1913 – 1924 .  

comments powered by Disqus