Start Submission Become a Reviewer

Reading: Precipitation over multiscale terrain

Download

A- A+
Alt. Display

Original Research Papers

Precipitation over multiscale terrain

Author:

Qingfang Jiang

University of Corporation for Atmospheric Research, Monterey, CA 93943, US
X close

Abstract

Stratiform precipitation over multiscale terrain is examined based on two-dimensional simulations of moist airflow past two-ridge terrain with a narrower ridge superposed on the windward slope of a wider ridge. It has been demonstrated that the narrower ridge could significantly modulate the precipitation intensity and distribution by inducing upslope ascent, leeside descent, and gravity waves.

Three distinct flow regimes have been identified based on simulations, namely linear, non-linear, and blocking regimes. For low terrain, the wave response is primarily linear, and more precipitation occurs over the narrower ridge. Precipitation over the major ridge is much reduced by precipitation over the narrower ridge, which decreases the moisture flux that reaches the major ridge, and by leeside descent over the narrower ridge, which limits the horizontal dimension of the updraft zone over the major ridge. In the linear regime, the total precipitation produced by the two-ridge terrain and the corresponding wide smooth ridge is comparable. For terrain of moderate heights, the wave response is nonlinear and oscillation occurs with updraft and precipitation maxima alternating between the upwind slopes of the two ridges, likely due to non-linear wave—wave interaction. Strong lee waves are produced in the lee of the first ridge due to non-linear amplification and could significantly enhance precipitation over the major ridge through directly increasing the condensation rate over the upwind slope of the major ridge and through generating snow above the freezing level. Correspondingly, precipitation rates over the two ridges become comparable and the total precipitation over the tworidge terrain is considerably larger than over the corresponding reference ridge. For higher terrain, blocking becomes significant and precipitation over the first ridge tends to detach from the terrain and propagates upstream.

Additional simulations indicate that the precipitation intensity and distribution are also sensitive to terrain geometry such as the ratio of the two ridge heights, the depth of the relative valley, and the distance between the two ridges.

How to Cite: Jiang, Q., 2007. Precipitation over multiscale terrain. Tellus A: Dynamic Meteorology and Oceanography, 59(3), pp.321–335. DOI: http://doi.org/10.1111/j.1600-0870.2007.00232.x
1
Views
1
Downloads
  Published on 01 Jan 2007
 Accepted on 23 Jan 2007            Submitted on 19 Jun 2006

References

  1. Bergeron , T. 1949 . The problem of artificial control of rainfall on the globe. Part II: The coastal orographic maxima of precipitation in autumn and winter . Tellus 1 , 15 – 32 .  

  2. Bougeault , P. , Binder , R , Buzzi , A. , Dirks , R. , Houze , R. , and Coauthors , 2001. The MAP special observing period. Bull. Amer Meteor Soc . 82 , 433 - 462 .  

  3. Bruitjes , R. T. , and Hall , W. 1994 . Interactions between topographic airflow and cloud and precipitation development during the Passage of a Winter Storm in Arizona. J. Atmos. Sc i . 51 , 48 – 67 .  

  4. Chen , S.-H. and Lin , Y.-L. 2005 . Effects o moist Froude number and CAPE on a conditionally unstable flow over a mesoscale mountain ridge. J. Atmos. Sc i . 62 , 331 – 350 .  

  5. Chiao , S. , Lin , Y.-L. and Kaplan , M. L. 2004 . Numerical study of orographic forcing of heavy orographic precipitation during MAP-IOP-2B. Mon. Wea. Re v . 232 , 2184 – 2203 .  

  6. Colle , B. A. 2004 . Sensitivity of orographic precipitation to changing ambient conditions and terrain geometries: an idealized modeling perspective. J. Atmos. Sc i . 61 , 588 – 606 .  

  7. Colle , B. A. and Zeng , Y. 2004 . Bulk microphysical sensitivities within the MM5 for orographic precipitation. Part II: impact of barrier width and freezing level. Mon. Wea. Re v . 132 , 2802 – 2815 .  

  8. Emanuel , K. A. 1994 . Atmospheric Convection . Oxford University Press , New York , 580 pp .  

  9. Fuhrer , O. and Schär , C. 2005 . Embedded cellular convection in moist flow past topography. J. Atmos. Sc i . 62 , 2810 – 2828 .  

  10. Hodur , R. M. 1997 . The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Mon. Wea. Re v . 125 , 1414 – 1430 .  

  11. Jiang , Q. 2003 . Moist dynamics and orographic precipitation . Tellus 55A , 301 – 316 .  

  12. Jiang , Q. 2006 . Precipitation over concave terrain. J. Atmos. Sc i . 63 , 2269 – 2288 .  

  13. Jiang , Q. and Smith , R. B. 2003 . Cloud timescale and orographic precipitation. J. Atmos. Sc i . 60 , 1534 – 1559 .  

  14. Kessler , E. 1969 . On the distribution and continuity of water substance in atmospheric circulations . Meteor Monogr 32 , Amer. Meteor. Sco ., 84pp .  

  15. Kirshbaum , D. J. and Durran , D. R. 2004 . Factors governing cellular convection in orographic precipitation. J. Atmos. Sc i . 61 , 682 – 698 .  

  16. Lalas , D. P. and Einaudi , F. 1974 . On the correct use of the wet adiabatic lapse rate in the stability criteria of a saturated atmosphere . J. Appl. Meteor 13 , 318 – 324 .  

  17. Louisa , B. N. and Durran , D. R. 1998 . A modeling study of nonstationary trapped mountain lee waves. Part II: Nonlinearity. J. Atmos. Sc i . 49 , 1427 – 1442 .  

  18. Medina , S. and Houze R. A. Jr . 2003 . Air motions and precipitation growth in Alpine storms . Quart. J. R. Meteor Soc . 129 , 345 – 372 .  

  19. Miglietta , M. M. and Buzzi , A. 2004 . A numerical study of moist stratified flow regimes over isolated topography . Quart. J. R. Meteor. Soc . 130 , 1749 – 1779 .  

  20. Miller , P. P. and Durran , D. R. 1991 . On the sensitivity of downslope windstorms to the asymmetry of the mountain profiles. J. Atmos. Sc i . 48 , 1457 – 1473 .  

  21. Pierrehumbert , R. T. and Wyman , B. 1985 . Upstream effects of mesoscale mountains. J. Atmos. Sc i . 42 , 977 – 1003 .  

  22. Rotunno , R. and Ferretti , R. 2001 . Mechanisms of intense Alpine rainfall. J. Atmos. Sc i . 58 , 1732 – 1749 .  

  23. Rotunno , R. and Ferretti , R. 2003 . Orographic effects on rainfall in MAP cases IOP 2b and IOP 8 . Quart. J. R. Meteor Soc . 129 , 373 – 390 .  

  24. Rutledge , S. A. and Hobbs , P. V. 1983 . The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VBI: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sc i . 40 , 1185 – 1206 .  

  25. Rutledge , S. A. and Hobbs , P. V. 1984 . The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: a diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sc i . 41 , 2949 – 2972 .  

  26. Schneidereit , M. and Schär , C. 2000 . Idealised Numerical Experiments of Alpine Flow Regimes and Southside Precipitation Events . MeteoroL Atmos. Phys ., 72 , 233 – 250 .  

  27. Schultz , P. 1995 . An explicit cloud physics parameterization for operational numerical weather prediction. Mon. Wea. Re v . 123 , 3331 – 3343 .  

  28. Scorer , R. S. 1949 . Theory of lee waves of mountains . Quart. J. Roy. aMeteor Soc . 75 , 41 – 56 .  

  29. Smith , R. B. 1979 . The influence of mountains on the atmosphere . Adv. Geophys . 21 , 87 – 230 .  

  30. Smith , R. B. 1980 . Linear theory of stratified hydrostatic flow past an isolated mountain . Tellus 32 , 348 – 364 .  

  31. Smith , R. B. and Barstad , I. 2004 . A linear theory of orographic precipitation. J. Atmos. Sc i . 61 , 1377 – 1391 .  

  32. Smith , R. B. and Lin , Y.-L. 1982 . The addition of heat to a stratified airstream with application to the dynamics of orographic rain . Quart. J. R. Met. Soc . 108 , 353 – 378 .  

  33. Smith , R. B. , Jiang , Q. , Fearon , M. G. , Tabary , R , Dorninger , M. , Doyle , J. D. and Benoit , R. 2003 . Orographic precipitation and airmass transformation: An Alpine example . Quart. J. R. Meteor Soc . 129 , 433 – 454 .  

  34. Smith , R. B. , Barstad , I. and Bonneau , L. 2005 . Orographic precipitation and Oregon’s climate transition. J. Atmos. Sc i . 62 , 177 – 191 .  

  35. Stoelinga , M. T. , Hobbs , P. V. , Mass , C. F. , Locatelli , H. D. , Colle , B. A. and coauthors, 2003. Improvement of microphysical parameterization through observational verification experiment . Bull. Amer Met. Soc . 84 , 1807– 1826 .  

comments powered by Disqus