Start Submission Become a Reviewer

Reading: An efficient method for recovering Lyapunov vectors from singular vectors

Download

A- A+
Alt. Display

Original Research Papers

An efficient method for recovering Lyapunov vectors from singular vectors

Authors:

Christopher L. Wolfe ,

College of Oceanic and Atmospheric Sciences, Oregon State University, 104 COAS Admin. Bldg., Corvallis, OR 97331-5503; Scripps Institution of Oceanography, US
X close

Roger M. Samelson

College of Oceanic and Atmospheric Sciences, Oregon State University, 104 COAS Admin. Bldg., Corvallis, OR 97331-5503, US
X close

Abstract

Lyapunov vectors are natural generalizations of normal modes for linear disturbances to aperiodic deterministic flows and offer insights into the physical mechanisms of aperiodic flow and the maintenance of chaos. Most standard techniques for computing Lyapunov vectors produce results which are norm-dependent and lack invariance under the linearized flow (except for the leading Lyapunov vector) and these features can make computation and physical interpretation problematic. An efficient, norm-independent method for constructing the n most rapidly growing Lyapunov vectors from n − 1 leading forward and n leading backward asymptotic singular vectors is proposed. The Lyapunov vectors so constructed are invariant under the linearized flow in the sense that, once computed at one time, they are defined, in principle, for all time through the tangent linear propagator. An analogous method allows the construction of the n most rapidly decaying Lyapunov vectors from n decaying forward and n − 1 decaying backward singular vectors. This method is demonstrated using two low-order geophysical models.

How to Cite: Wolfe, C.L. and Samelson, R.M., 2007. An efficient method for recovering Lyapunov vectors from singular vectors. Tellus A: Dynamic Meteorology and Oceanography, 59(3), pp.355–366. DOI: http://doi.org/10.1111/j.1600-0870.2007.00234.x
4
Views
  Published on 01 Jan 2007
 Accepted on 2 Feb 2007            Submitted on 24 May 2006

References

  1. Bennetin , G. , Galgani , L. , Giorgilli , A. and Strelcyn , J.-M. 1980 . Lya-punov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: A method for computing all of them . Meccanica 15 , 9 – 21 .  

  2. Buizza , R. and Palmer , T. 1995 . The singular vector structure of the atmospheric general circulation. J. Atmos. Sc i . 52 , 1434 – 1456 .  

  3. Buizza , R. , Houtekamer , P. L. , Toth , Z. , Pellerin , G. , Wei , M. and co-authors. 2005. A comparison of the ECMWF, MSC and NCEP global ensemble prediction systems. Mon. Wea. Rev . 133 , 1076 - 1097 .  

  4. Coddington , E. A. and Levinson , N. 1955 . Theory of Ordinary Differential Equations . McGraw Hill , New York .  

  5. Drazin , P. G. and Reid , W. H. 2004 . Hydrodynamical Stability . 2nd edition , Cambridge University Press , Cambridge, UK .  

  6. Eckmann , J.-P. and Ruelle , D. 1985 . Ergodic theory of chaos and strange attractors . Rev. Mod. Phys . 57 , 617 – 656 .  

  7. Farrell , B. F. 1989 . Optimal excitation of baroclinic waves. J. Atmos. Sc i . 46 , 1193 – 1206 .  

  8. Farrell , B. F. and Ioannou , P. J. 1996 . Generalized stability theory part I: Autonomous operators. J. Atmos. Sc i . 53 , 2025 – 2040 .  

  9. Frederilcsen , J. S. 1997 . Adjoint sensitivity and finite-time normal mode disturbances during blocking. J. Atmos. Sci . 54 , 1144 – 1165 .  

  10. Goldhirsch , I. , Sulem , P. L. and Orszag , A. 1987 . Stability and lyapunov stability of dynamical systems: A differential approach and a numerical method . Phyisca D 27 , 311 – 337 .  

  11. Golub , G. H. and Van Loan , C. F. 1996 . Matrix Computations 3rd edition The Johns Hopkins University Press Ltd , London .  

  12. Legras , B. and Vautard , R. 1996 . A guide to Liapunov vectors . In: Predictability , Volume I. European Centre for Medium-Range Weather Forecasts , 143 – 156 .  

  13. Lorenz , E. N. 1963 . Deterministic non-periodic flow. J. Atmos. Sc i . 20 , 130 – 141 .  

  14. Lorenz , E. N. 1965 . A study of the predictability of a 28-variable atmospheric model . Tellus 17 , 321 – 333 .  

  15. Lorenz , E. N. 1984 . The local structure of a chaotic attractor in four dimensions . Physica D 13 , 90 – 104 .  

  16. Oseledec , V. 1968 . A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems . Trans. Moscow Math. Soc . 19 , 179 – 210 .  

  17. Pedlosky , J. 1971 . Finite-amplitude baroclinic waves with small dissipation . J. Phys. Oceanogr 28 , 587 – 597 .  

  18. Pedlosky , J. 1987 . Geophysical Fluid Dynamics . 2nd edition . Springer .  

  19. Pedlosky , J. and Frenzen , C. 1980 . Chaotic and periodic behavior of finite-amplitude baroclinic waves. J. Atmos. Sci . 37 , 1177 – 1196 . New York .  

  20. Samelson , R. M. 2001a . Lyapunov, floquet, and singular vectors for baroclinic waves. Nonlinear Processes Geophys. 8 , 439 - 448.  

  21. Samelson , R. M. 2001b. Periodic orbits and disturbance growth for baroclinic waves. J. Atmos. Sc i . 58 , 436 – 450 .  

  22. Samelson , R. M. and Wolfe , C. L. 2003 . A nonlinear baroclinic wave-mean oscillation with multiple normal mode instabilities. J. Atmos. Sc i . 60 , 1186 – 1199 .  

  23. Shimada , I. and Nagashima , T. 1979 . A numerical approach to the ergodic problem of dissipative dynamical systems . Prog. Theor Phys . 61 , 1605 – 1616 .  

  24. Sparrow , C. 1982 . The Lorenz Equations: Bifurcations , Chaos , and Strange Attractors. Springer-Verlag , New York .  

  25. Trevisan , A. and Legnani , R. 1995 . Transient error growth and local predictability: A study of the Lorenz system . Tellus 47A , 103 – 117 .  

  26. Trevisan , A. and Pancotti , F. 1998 . Periodic orbits, Lyapunov vectors, and singular vectors in the Lorenz system. J. Atmos. Sc i . 55 , 390 – 398 .  

  27. Vannitsem , S. and Nicolis , C. 1997 . Lyapunov vectors and error growth patterns in a T21L3 quasigeostrophic model. J. Atmos. Sc i . 54 , 357 – 361 .  

  28. Vastano , J. A. and Moser , R. D. 1991 . Short-time Lyapunov exponent analysis and the transition to chaos in Taylor-Couette flow . J. Fluid Mech . 233 , 83 – 118 .  

  29. Wei , M. and Frederilcsen , J. S. 2004 . Error growth and dynamical vectors during southern hemisphere blocking . Nonlinear Processes Geophys . 11 , 99 – 118 .  

  30. Wolfe , C. L. and Samelson , R. M. 2006 . Normal-mode analysis of a baroclinic wave-mean oscillation. J. Atmos. Sc i . 63 , 2795 – 2812 .  

  31. Yoden , S. and Nomura , M. 1993 . Finite time lyapunov stability analysis and its application to atmospheric predictability. J. Atmos. Sc i . 50 , 1531 – 1543 .  

comments powered by Disqus