Start Submission Become a Reviewer

Reading: Parametrization of orographic effects on surface radiation in HIRLAM

Download

A- A+
Alt. Display

Original Research Papers

Parametrization of orographic effects on surface radiation in HIRLAM

Authors:

A. V. Senkova,

Russian State Hydrometeorological University, St.Petersburg, RU
X close

L. Rontu ,

Finnish Meteorological Institute, Helsinki, FI
X close

H. Savijärvi

University of Helsinki, Helsinki, FI
X close

Abstract

A parametrization scheme for orographic effects on surface radiation was introduced in the High Resolution Limited Area Model. One-kilometre resolution digital elevation data were used to derive the needed orographic parameters. The scheme is applicable within a model setup of any resolution, but is shown to significantly affect the local near-surface temperatures only when the horizontal resolution is less than a few kilometres. Then, typical maximum local differences due to the new parametrizations are 50–100 W m−2 in the net radiation fluxes and 1°–3° in the screen-level temperature. Interactions between clouds and radiation were detected both in the single-column and three-dimensional sensitivity experiments.

How to Cite: Senkova, A.V., Rontu, L. and Savijärvi, H., 2007. Parametrization of orographic effects on surface radiation in HIRLAM. Tellus A: Dynamic Meteorology and Oceanography, 59(3), pp.279–291. DOI: http://doi.org/10.1111/j.1600-0870.2007.00235.x
  Published on 01 Jan 2007
 Accepted on 19 Feb 2007            Submitted on 15 Aug 2006

References

  1. Dubayah , R. and van Katwijk , V. 1992 . The topographic distribution of annual incoming solar radiation in the rio grande river basin . Geophys. Res. Lett . 19 , 2231 – 2234 .  

  2. Ellingson , R. G. and Fouquart , Y. 1991 . The intercomparison of radiation codes used in climate models: an overview . J. Geophys. Res . 96 , 8925 – 8927 .  

  3. Hu , Y.-X. and Stamnes , K. 1993 . An accurate parameterization of the radiative properties of water clouds suitable for use in climate models . J. Clim . 6 , 728 – 742 .  

  4. Kondratyev , K. Y. , Pivovarova , Z. and Fedorova , M. P. 1978 . The Radiation Regime of Sloping Surfaces . Hydrometeoizdat , 216 pp . (In Russian) .  

  5. Liang , X.-Z. , Xu , M. , Choi , H. I. L. , Kunkel , K. E. , Rontu , L. and co-authors. 2006. Development of the regional climate-weather research and forecasting model (CWRF): treatment of subgrid topography effects. Available as http://www.mmm.ucar.edu/wrf/users/workshops/WS2006/abstracts/Session07/7_3_Liang.pdf.  

  6. Matzinger , N. , Andretta , M. , Gorsel , E. V , Vogt , R. , Ohmura , A. and co-authors. 2003. Surface radiation budget in alpine valley. Quart. J. Roy. Met. Soc . 129 , 877 - 895 .  

  7. Müller , M. D. and Scherer , D. 2004 . A radiation parameterization of topographic effects for mesoscale models. Geophysical Research Abstracts. European Geosciences Union 6 , 1 pp. , Available as http://www.cosis.net/abstracts/EGU04/04896/EGU044-04896 .  

  8. Müllera , M. D. and Scherer , D. 2005 . A grid- and subgrid-scale radiation parametrization of topographic effects for mesoscale weather forecast models. Mon. Wea. Re v . 133 , 1431 – 1442 .  

  9. Niemeld , S. , Räisdnen , P. and Savijärvi , H. 2001a . Comparison of surface radiative flux parametrizations. Part I: longwave radiation . Atmosph. Res . 58 , 1 – 18 .  

  10. Niemeld , S. , Räisdnen , P. and Savijärvi , H. 2001b . Comparison of surface radiative flux parametrizations. Part II: shortwave radiation . Atmosph. Res . 58 , 141 – 154 .  

  11. Nunes , M. , Elliason , I. and Lindgren , J. 2000 . Spatial variation of incoming longwave radiation in Goteborg, Sweden . Theor AppL Climatol . 67 , 181 – 192 .  

  12. Oliphant , A. J. , Spronken-Smith , R. A. , Sturman , A. P. and Owens , I. F. 2003 . Spatial variability of surface radiation fluxes in mountainous terrain . J. AppL Meteor . 42 , 113 – 128 .  

  13. Paltridge , G. and Platt , C. M. R. 1976 . Radiative Processes in Meteorology and Climatology . Elsevier Scientific Publishing company , New York , 318 pp .  

  14. Räisänen , P. , Rummulcainen , M. and Räisdnen , J. 2000 . Modification of the Hirlam radiation scheme for use in the Rossby Centre regional atmospheric climate model. Technical Report 49, Department of Meteorology, University of Helsinki, 71. Available at http://www.meteo.helsinki.fi.  

  15. Rodriguez , E. , Navascues , B. , Ayuso , J. J. and Järvenoja , S. 2003 . Analysis of surface variables and parameterization of surface processes in HIRLAM. Part I: approach and verification by parallel runs. Technical report, HIRLAM, 52 pp. Available at http://hirlam.knmi.nl.  

  16. Rontu , L., 2006 . A study on parametrization of orography-related momentum fluxes in a synoptic-scale NWP model. Tellus 58A, 68-81. Savijärvi, H. 1990. Fast radiation parameterization schemes for mesoscale and short-range forecast models . J. AppL Meteor 29 , 437 – 447 .  

  17. Savijärvi , H. , Arola , A. and Räisdnen , P. 1997 . Shortwave optical properties of precipitating waterclouds . Quart. J. Roy. Met. Soc . 123 , 883 – 899 .  

  18. USGS , 1998 . GTOP030, Global 30 Arc Second Elevation data set. U.S. Geological Survey, available at http://edcdaac.usgs.gov/gtopo30/gtopo30.html.  

  19. USGS , 2003 . Hydro lk elevation derivative database. http://edcdaac. usgs.gov/gtopo30/hydro/readme.html.  

  20. van Meijgaard , E. , Andrae , U. and Rockel , B. 2001 . Comparison of model predicted cloud parameters and surface radiation fluxes with observations in the 100 km scale . Meteor Atmos. Phys . 77 , 109 – 120 .  

  21. Whiteman , C. D. , Allwine , K. J. , Fritschen , L. J. , Orgill , M. M. and Simpson , J. R. 1989a . Deep valley radiation and surface energy budget microclimates. Part I: radiation . J. AppL Meteor 28 , 414 – 426 .  

  22. Whiteman , C. D. , Allwine , K. J. , Fritschen , L. J. , Orgill , M. M. and Simpson , J. R. 1989b . Deep valley radiation and surface energy budget microclimates. Part IL energy budget . J. AppL Meteor 28 , 427 – 437 .  

  23. Wyser , K. , Rontu , L. and Savijärvi , H. 1999 . Introducing the effective radius into a fast radiation scheme of a mesoscale model . Contr Atm. Phys . 72 , 205 – 218 .  

comments powered by Disqus