Start Submission Become a Reviewer

Reading: Tropical cyclones in a T159 resolution global climate model: comparison with observations an...

Download

A- A+
Alt. Display

Original Research Papers

Tropical cyclones in a T159 resolution global climate model: comparison with observations and re-analyses

Authors:

L. Bengtsson,

Environmental Systems Science Centre (ESSC), University of Reading, Whiteknights, PO Box 238, Reading, UK; Max Planck Institute for Meteorology, Hamburg, DE
X close

K. I. Hodges ,

Environmental Systems Science Centre (ESSC), University of Reading, Whiteknights, PO Box 238, Reading, GB
X close

M. Esch

Max Planck Institute for Meteorology, Hamburg, DE
X close

Abstract

Tropical cyclones have been investigated in a T159 version of the MPI ECHAM5 climate model using a novel technique to diagnose the evolution of the three-dimensional vorticity structure of tropical cyclones, including their full life cycle from weak initial vortices to their possible extra-tropical transition. Results have been compared with re-analyses [the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-yr Re-analysis (ERA40) and Japanese 25 yr re-analysis (JRA25)] and observed tropical storms during the period 1978–1999 for the Northern Hemisphere. There is no indication of any trend in the number or intensity of tropical storms during this period in ECHAM5 or in re-analyses but there are distinct inter-annual variations. The storms simulated by ECHAM5 are realistic both in space and time, but the model and even more so the re-analyses, underestimate the intensities of the most intense storms (in terms of their maximum wind speeds). There is an indication of a response to El Niño-Southern Oscillation (ENSO) with a smaller number of Atlantic storms during El Niño in agreement with previous studies.

The global divergence circulation responds to El Niño by setting up a large-scale convergence flow, with the centre over the central Pacific with enhanced subsidence over the tropical Atlantic. At the same time there is an increase in the vertical wind shear in the region of the tropical Atlantic where tropical storms normally develop. There is a good correspondence between the model and ERA40 except that the divergence circulation is somewhat stronger in the model. The model underestimates storms in the Atlantic but tends to overestimate them in theWestern Pacific and in the North Indian Ocean.

It is suggested that the overestimation of storms in the Pacific by the model is related to an overly strong response to the tropical Pacific sea surface temperature (SST) anomalies. The overestimation in the North Indian Ocean is likely to be due to an over prediction in the intensity of monsoon depressions, which are then classified as intense tropical storms. Nevertheless, overall results are encouraging and will further contribute to increased confidence in simulating intense tropical storms with high-resolution climate models.

How to Cite: Bengtsson, L., Hodges, K.I. and Esch, M., 2007. Tropical cyclones in a T159 resolution global climate model: comparison with observations and re-analyses. Tellus A: Dynamic Meteorology and Oceanography, 59(4), pp.396–416. DOI: http://doi.org/10.1111/j.1600-0870.2007.00236.x
  Published on 01 Jan 2007
 Accepted on 29 Jan 2007            Submitted on 27 Sep 2006

References

  1. Bender , M. A. and Ginis , I. 2000 . Real case simulations of hurricane-ocean interaction using a high resolution coupled model: Effects on hurricane intensity. Mon. Wea. Re v . 126 , 917 – 946 .  

  2. Bengtsson , L. , Botzet , M. and Esch , M. 1995 . Hurricane-type vortices in a general circulation model . Tellus 47A , 175 – 196 .  

  3. Bengtsson , L. , Botzet , M. and Esch , M. 1996 . Will greenhouse gas-induced warming over the next 50 yr lead to higher frequency and greater intensity of hurricanes? . Tellus 48A , 57 – 73 .  

  4. Bengtsson , L. , Botzet , M. and Esch , M. 1997 . Numerical simulations of intense tropical storms. In: Hurricanes (eds H. E Diaz ). R. S. Pulwarty Springer-Verlag, Berlin 1997 , 67 – 90 .  

  5. Bengtsson , L. , Hodges , K. I. and Roeckner , E. 2006 . Storm tracks and climate change . J. Clim . V19 , 3518 – 3543 .  

  6. Bengtsson , L. , Hodges , K. I. , Esch , M. , Keenlyside , N. , Komblush , L. , Luo , J. J. , and Yamagata , T. 2007 . How many tropical cyclones change in a warmer climate . Tellus , in press .  

  7. Bister , M. and Emanuel , K. 1998 . Dissipative heating and hurricane intensity . Meteorol. Atmos. Phys . 50 , 233 – 240 .  

  8. Broccoli , A. J. and Manabe , S. 1990 . Can existing climate models be used to study anthropogenic changes in tropical cyclone climate? . Geophys. Res. Lett . 17 , 1917 – 1920 .  

  9. Camargo , S. J. and Zebiak , S. E. 2002 . Improving the detection and tracking of tropical cyclones in atmospheric general circulation models . Wea. Forecast . 17 , 1152 – 1162 .  

  10. Chan , J. C. L. 2006 . Comment on ‘Changes in Tropical Cyclone Number, Duration and Intensity in a Warming Environment’ . Science 311 , 1713 .  

  11. Chauvin , F. , Royer , J.-F. and Deque , M. 2006 . Response of hurricane-type vortices to global warming as simulated by ARPEGE-Climat at high resolution . Clim. Dyn . 27 , 377 – 399 .  

  12. DeMaria , M. , Mainelli , M. , Shay , L. K. , Knaff , J. A. and Kaplan , J. 2005 . Further improvement to the statistical hurricane intensity prediction scheme (SHIPS) . Weather Forecas . 20 , 531 – 543 .  

  13. Elsner , J. B. , Tsonis , A. A. and Jagger , T. J. 2006 . High-frequency variability in hurricane power dissipation and its relationship to global temperature . Bull. Am. Meteorol. Soc . 87 , 763 – 768 .  

  14. Emanuel , K. 2005 . Increasing destructiveness of tropical cyclones over the past 30 yr . Nature 436 , 686 – 688 .  

  15. Fiorino , M. 2002 . Analysis and forecasts of tropical cyclones in the ECMWF 40-yr re-analysis, extended abstract for paper presented at 25th Conference on Hurricanes and Tropical Meteorology, Am. Mete-orol. Soc. , San Diego, Calif. 29 April-3 May .  

  16. Haarsma , R. J. , Mitchell , J. F. B. and Senior , C. A. 1993 . Tropical disturbances in a GCM . Clim. Dyn . 8 , 247 – 257 .  

  17. Hatsushilca , H. , Tsutsui , J. , Fiorino , M. and Onogi , K. 2006 . Impact of wind retrievals on the analysis of tropical cyclones in the JRA-25 Re-analysis . J. Meteorol. Soc. Japan 84 , 891 – 905 .  

  18. Henderson-Sellers , A. , Zhang , H. , Berz , G. , Emanuel , K. , Gray , W. , and co-authors. 1998 . Tropical cyclones and global climate change: a post-IPCC assessment. Bull. Am. Meteorol. Soc . 79 , 19 - 38 .  

  19. Hodges , K. I. 1996 . Spherical nonparameteric estimators applied to the UGAMP model integration for AMIP. Mon. Weather Re v . V124 , 2914 – 2932 .  

  20. Hodges , K. I. , Hoskins , B. J. , Boyle , J. and Thorncroft , C. 2003 . A comparison of recent re-analysis datasets using objective feature tracking: storm tracks and tropical easterly waves. Mon. Weather Re v . V131 , 2012 – 2037 .  

  21. Klotzbach , P. J. 2006 . Trends in global tropical cyclone activity over the past twenty years (1986-2005), 2006. Geophys. Res. Lett . 33 , doi: https://doi.org/10.1029/2006GL025881 .  

  22. Krishnamurti , T. N. , Pattnaik , S. , Stefanova , L. , Vijaya Kumar , T. S. V. , Mackey , B. P. , and co-authors. 2005 . The Hurricane Intensity Issue . Mon. Wea. Rev . 133 , 1886– 1912 .  

  23. Knutson , T. K. and Tuleya , R. E. 2004 . Impact of CO2-induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization . J. Clim . 17 , 3477 – 3495 .  

  24. Landsea , C. W. 2000 . El Nino/Southern oscillation and the seasonal predictability of Tropical Cyclones. In: El Niiio and the Southern Oscillation: Multiscale Variability and Global and Regional Impacts (eds H. E Diaz and V. Markgraf ). Cambridge University Press , 149 - 181 .  

  25. Nakicenovic , N. , and co-authors. 2000. Special Report on Emissions Scenarios. Cambridge University Press, 599 pp .  

  26. Ohfuchi , W. , Nakamura , H. , Yoshioka , M. , Enomoto , T. , Talcaya , K. , and co-authors. 2004.10-km mesh meso-scale resolving global simulations of the atmosphere on the Earth Simulator – Preliminary out-comes of AFES (AGCM for the Earth Simulator). J. Earth Simulator 1 , 8 - 34 .  

  27. van Oldenborgh , G. J. , Philip , S. and Collins , M . 2005 . El Nino in a changing climate: A multimodel study. Ocean Sci. Discuss . 2 , 267 - 298 .  

  28. Onogi , K. , Koide , H. , Salcamoto , M. , Kobayashi , S. , Tsutsui , J. , and co-authors . 2005 . JRA-25: Japanese 25-yr re-anlysis project-progress and status. Meteorol, Q. J. R. Soc . 131 , 3259 - 3268 .  

  29. Oouchi , K. , Yoshimura , J. , Yoshimura , H. , Mizuta , R. , and co-authors . 2006. Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: frequency and wind intensity analysis. J. Meteorol. Soc. Japan 84 , 259 - 276 .  

  30. Roeckner , E. , Bäuml , G. , Bonaventura , L. , Brokopf , R. , Esch , M. , and co-authors. 2003. The atmospheric general circulation model ECHAM 5. PART I: Model description MPI-Report 349, 127 pp.  

  31. Roeckner , E. , Brokopf , R. , Esch , M. , Giorgetta , M. , Hagemann , S. , Kornblueh , L. , and co-authors . 2006. Sensitivity of simulated climate to horizontal and vertical resolution in the echam5 atmospheric model. J. Clim . 19 , 3771-379 1 .  

  32. Shen , B.-W. , Atlas , R. , Chern , J.-D. , Reale , O. , Lin , S.-J. , and co-authors. 2006a. The 0.125 degree finite-volume general circulation model on the NASA Columbia supercomputer: Preliminary simulations of mesoscale vortices. Geophys. Res. Lett . 33 , doi: https://doi.org/10.1029/2005GL024594 .  

  33. Shen , B.-W. , Atlas , R. , Reale , O. , Lin , S.-J. , Chern , J.-D. , and co-authors. 2006b. Hurricane forecasts with a global mesoscale-resolving model: Preliminary results with Hurricane Katrina (2005). Geophys. Res. Lett . 33 , doi: https://doi.org/10.1029/2006GL026143 .  

  34. Sriver , R. and Huber , M. 2006 . Low-frequency variability in globally integrated tropical cyclone power dissipation . Geo. Phys. Res. Letters 33 , 11705 – 11710 , doi: https://doi.org/10.1029/2006GL026167 .  

  35. Sugi , M. , Noda , A. and Sato , N. 2002 . Influence of the global warming on tropical cyclone climatology: An experiment with the JMA global model . J. Meteorol. Soc. Japan 80 , 249 – 272 .  

  36. Thorncroft , C. and Hodges , K. 2001 . African easterly wave variability and its relationship to atlantic tropical cyclone activity . J. Clim . V14 , 1166 – 1179 .  

  37. Uppala , S. M. , Milberg , P. W. , Simmons , A. J. , Andrae , U. , Bechtold , V. Da Costa, and co-authors. The ERA40 re-analysis. Q. J. R. Meteorol. Soc . 131 , 2961-301 2 .  

  38. Webster , P. J. , Holland , G. J. , Curry , J. A. and Chang , H. R. 2005 . Changes in tropical cyclone number, duration and intensity in a warming environment . Science 309 , 1844 – 1846 .  

  39. WGNE , 1996 . AMIP II guidelines. Atmospheric Model Intercomparison Project Newsletter, No. 8, AMIP Project Office, Livermore, CA, 24 pp. [Available from AMIP Project Office, PCMDI, L-264, LLNL, P.O. Box 808, Livermore, CA 945501  

  40. Wu , G. and Lau , N.-C. 1992 . A GCM simulation of the relationship between tropical-storm formation and ENSO. Mon. Wea. Re v . 120 , 958 – 977 .  

comments powered by Disqus