Start Submission Become a Reviewer

Reading: Tropical cyclone genesis potential index in climate models

Download

A- A+
Alt. Display

Original Research Papers

Tropical cyclone genesis potential index in climate models

Authors:

Suzana J. Camargo ,

International Research Institute for Climate and Society, Lamont Campus, Palisades, NY, US
X close

Adam H. Sobel,

Department of Applied Physics and Applied Mathematics, and Department of Earth and Environmental Sciences, Columbia University, New York, NY, US
X close

Anthony G. Barnston,

International Research Institute for Climate and Society, Lamont Campus, Palisades, NY, US
X close

Kerry A. Emanuel

Program in Atmospheres, Oceans and Climate, Massachusetts Institute of Technology, Cambridge, MA, US
X close

Abstract

The potential for tropical cyclogenesis in a given ocean basin during its active season has been represented by genesis potential indices, empirically determined functions of large-scale environmental variables which influence tropical cyclone (TC) genesis. Here we examine the ability of some of today’s atmospheric climate models, forced with historical observedSSTover a multidecadal hindcast period, to reproduce observed values and patterns of one such genesis potential index (GP), as well as whether the GP in a given model is a good predictor of the number of TCs generated by that model. The effect of the horizontal resolution of a climate model on its GP is explored.

The five analysed models are capable of reproducing the observed seasonal phasing of GP in a given region, but most of them them have a higher GP than observed. Each model has its own unique relationship between climatological GP and climatological TC number; a larger climatological GP in one model compared to others does not imply that that model has a larger climatological number of TCs. The differences among the models in the climatology of TC number thus appear to be related primarily to differences in the dynamics of the simulated storms themselves, rather than to differences in the simulated large-scale environment for genesis. The correlation of interannual anomalies in GP and number of TCs in a given basin also differs significantly from one model to the next.

Experiments using the ECHAM5 model at different horizontal resolutions indicate that as resolution increases, model GP also tends to increase. Most of this increase is realized between T42 and T63.

How to Cite: Camargo, S.J., Sobel, A.H., Barnston, A.G. and Emanuel, K.A., 2007. Tropical cyclone genesis potential index in climate models. Tellus A: Dynamic Meteorology and Oceanography, 59(4), pp.428–443. DOI: http://doi.org/10.1111/j.1600-0870.2007.00238.x
23
Views
9
Downloads
  Published on 01 Jan 2007
 Accepted on 29 Jan 2007            Submitted on 30 Aug 2006

References

  1. AMIP II (Atmospheric Model Intercomparison Project II) , 2007. AMIP II Sea Surface Temperature and Sea Ice Concentration Observations. Available on line at http://www-pcmdi.11nl.gov/amip/AMIP2EXPDSNMCSOBS/amip2bcs.htm.  

  2. Anthes , R. , Corell , R. , Holland , G. , Hurrell , J. , MacCracken , M. , and co-authors. 2006. Hurricanes and global warming-potential linkages and consequences. Bull. Amer Meteor. Soc . 87 , 623 - 628 .  

  3. Bengtsson , L. 2001 . Hurricane threats . Science 293 , 440 – 441 .  

  4. Bengtsson , L. , Böttger , H. and Kanamitsu , M. 1982 . Simulation of hurricane-type vortices in a general circulation model . Tellus 34 , 440 – 457 .  

  5. Bengtsson , L. , Botzet , M. and Esch , M. 1995 . Hurricane-type vortices in a general circulation model . Tellus 47A , 175 – 196 .  

  6. Bengtsson , L. , Botzet , M. and Esch , M. 1996 . Will greenhouse gas-induced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes? . Tellus 48A , 57 – 73 .  

  7. Bengtsson , L. , Hodges , K. I. and Roeckner , E. 2006 . Storm tracks and climate change . J. Climate 19 , 3518 – 3543 .  

  8. Bister , M. and Emanuel , K. A. 1998 . Dissipative heating and hurricane intensity . Meteor Atm. Phys . 52 , 233 – 240 .  

  9. Bister , M. and Emanuel , K. A. 2002a . Low frequency variability of tropical cyclone potential intensity, 1, interannual to interdecadal variability . J. Geophys. Res . 107 , 4801 , doi: https://doi.org/10.1029/2001JD000776 .  

  10. Bister , M. and Emanuel , K. A. 2002b . Low frequency variability of tropical cyclone potential intensity, 2, climatology for 1982-1995 . J. Geophys. Res . 107 , 4621 , doi: https://doi.org/10.1029/2001JDO00780 .  

  11. Broccoli , A. J. and Manabe , S. 1990 . Can existing climate models be used to study anthropogenic changes in tropical cyclone climate? . Geophys. Rev. Lett . 17 , 1917 – 1920 .  

  12. Camargo , S. J. and Sobel , A. H. 2004 . Formation of tropical storms in an atmospheric general circulation model . Tellus 56A , 56 – 67 .  

  13. Camargo , S. J. and Sobel , A. H. 2005 . Western North Pacific tropical cyclone intensity and ENSO . J. Climate 18 , 2996 – 3006 .  

  14. Camargo , S. J. and Zebiak , S. E. 2002 . Improving the detection and tracking of tropical storms in atmospheric general circulation models . Wea. Forecasting 17 , 1152 – 1162 .  

  15. Camargo , S. J. , Barnston , A. G. and Zebiak , S. E. 2004 . Properties of tropical cyclones in atmospheric general circulation models. IRI Technical Report 04-02,72 pp. International Research Institute for Climate Prediction, Palisades, NY.  

  16. Camargo , S. J. , Barnston , A. G. and Zebiak , S. E. 2005 . A statistical assessment of tropical cyclones in atmospheric general circulation models . Tellus 57A , 589 – 604 .  

  17. Camargo , S. J. , Emanuel , K. A. and Sobel , A. H. 2006 . Genesis potential index and ENSO in reanalysis and AGCMs. In: Proc. of 27th Conference on Hurricanes and Tropical Meteorology, 15C.2, American Meteorological Society, Monterey, CA.  

  18. Camargo , S. J. , Emanuel , K. A. and Sobel , A. H. 2007a . Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. IRI Technical Report 07-01,45 pp., International Research Institute for Climate Prediction, Palisades, NY; J. Climate , in press .  

  19. Camargo , S. J. , Li , H. and Sun , L. 2007b . Feasibility study for downscaling seasonal tropical cyclone activity using the NCEP regional spectral model . Int. J. Clim . 27 , 311 – 325 , doi: https://doi.org/10.1002/joc.1400 . (Online first)  

  20. Chan , J. C. L. 2006 . Comment on Changes in tropical cyclone number, duration, and intensity in a warming environment . Science 311 , 1713 .  

  21. Chauvin , F. , Royer , J.-F. and Deque , M. 2006 . Response of hurricane-type vortices to global warming as simulated by ARPEGE-Climat at high resolution . Clim. Dyn . 27 , 377 – 399 , doi: https://doi.org/10.1007/s00382-006-0135-7 .  

  22. Druyan , L. M. , Lonergan , P. and Eichler , T. 1999 . A GCM investigation of global warming impacts relevant to tropical cyclone genesis . Int. J. Climatol . 19 , 607 – 617 .  

  23. Emanuel , K. 2005a . Increasing destructiveness of tropical cyclones over the past 30 years . Nature 436 , 686 – 688 , doi: https://doi.org/10.1038/nature03906 .  

  24. Emanuel , K. 2005b . Emanuel replies . Nature 438 , E13 , doi: https://doi.org/10.1038/nature04427 .  

  25. Emanuel , K. A. 1986 . An air-sea interaction theory for tropical cyclones. Part I: steady-state maintenance. J. Atmos. Sc i . 43 , 585 – 604 .  

  26. Emanuel , K. A. 1995 . Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sc i . 52 , 3969 – 3976 .  

  27. Emanuel , K. A. and Nolan , D. S. 2004 . Tropical cyclone activity and global climate. In: Proc. of 26th Conference on Hurricanes and Tropical Meteorology, pp. 240-241, American Meteorological Society, Miami, FL.  

  28. Gray , W. M. 1979 . Hurricanes: their formation, structure and likely role in the tropical circulation. In: Meteorology over the Tropical Oceans . pp. 155 – 218 , Roy. Meteor. Soc .  

  29. Haarsma , R. J. , Mitchell , J. F. B. and Senior , C. A. 1993 . Tropical disturbances in a GCM . Clim. Dyn . 8 , 247 – 257 .  

  30. Hodges , K. I. 1994 . A general method for tracking analysis and its application to meteorological data. Mon. Wea. Re v . 122 , 2573 – 2586 .  

  31. Hoyos , C. D. , Agudelo , P. A. , Webster , P. J. and Curry , J. A. 2006 . Deconvolution of the factors contributing to the increase in global hurricane intensity. 312, 94-97, Science doi: https://doi.org/10.1126/science.1123560 . WI, 2007 .  

  32. IRI (International Research Institute for Climate and Society) Tropical Cyclone Activity Experimental Dynamical Forecasts. available on line at: http://iri.columbia.edufforecast/tc_fcst .  

  33. JTWC , 2007 . JTWC (Joint Typhoon Warning Center) best track dataset . available online at https : //metoc.npmoc.navy.mil/jtwc/best_tracks/ .  

  34. JTWC , 2007 . JTWC (Joint Typhoon Warning Center) best track dataset . available online at https : //metoc.npmoc.navy.mil/jtwc/best_tracks/ .  

  35. Kalnay , E. , Kanamitsu , M. , Kistler , R. , Collins , W. , Deaven , D. , and co-authors. 1996 . The NCEP/NCAR 40-year reanalysis project. Bull. Amer Meteor. Soc . 77 , 437 - 441 .  

  36. Kiehl , J. T. , Hack , J. J. , Bonan , G. B. , Boville , B. A. , Williamson , D. L. , and co-authors . 1998. The national center for atmospheric research community climate model: Ccm3. J. Climate 11 , 1131-114 9 .  

  37. Knutson , T. R. and Tuleya , R. E. 2004 . Impact of CO2-induced warming on simulated hurricane intensity and precipitation: sensitivity to choice of climate model and convective parametrizati on . J. Climate 17 , 3477 – 3495 .  

  38. Landman , W. A. , Seth , A. and Camargo , S. J. 2005 . The effect of regional climate model domain choice on the simulation of tropical cyclone-like vortices in the southwestern indian ocean . J. Climate 18 , 1263 – 1274 .  

  39. Landsea , C. W. 2005 . Hurricanes and global warming. Nature 438 , El 1-13 , doi: https://doi.org/10.1038/nature04477 .  

  40. Manabe , S. , Holloway , J. L. and Stone , H. M. 1970 . Tropical circulation in a time-integration of a global model of the atmosphere. J. Atmos. Sc i . 27 , 580 – 613 .  

  41. Mann , M. E. and Emanuel , K. A. 2006 . Atlantic hurricane trends linked to climate change . EOS 87 , 233 , 238,241 .  

  42. Matsuura , T. , Yumoto , M. , Iizuka , S. and Kawamura , R. 1999 . Typhoon and ENSO simulation using a high-resolution coupled GCM . Geophys. Res. Lett . 26 , 1755 – 1758 .  

  43. Matsuura , T. , Yumoto , M. and Iizulca , S. 2003 . A mechanism of inter-decadal variability of tropical cyclone activity over the western North Pacific . Clim. Dyn . 21 , 105 – 117 .  

  44. McDonald , R. E. , Bleaken , D. G. , Cresswell , D. R. , Pope , V. D. and Senior , C. A. 2005 . Tropical storms: representation and diagnosis in climate models and the impacts of climate change . Clim. Dyn . 25 , 19 – 36 .  

  45. Model User Support Group , 1992 . Echam3 - atmospheric general circulation model . Tech. Rep. 6 , Das Deutshes Klimarechnenzentrum, Hamburg , Germany , 184 pp .  

  46. NHC , 2007 . NHC (National Hurricane Center) best track dataset . available online at http : //www.nhc.noaa.gov .  

  47. Nolan , D. S. , Rappin , E. D. and Emanuel , K. A. 2006 . Could hurricanes form from random convection in a warmer world?. In: Proc. of 27th Conference on Hurricanes and Tropical Meteorology, 1C.8, American Meteorological Society, Monterey, CA.  

  48. Oouchi , K. , Yoshimura , J. , Yoshimura , H. , Mizuta , R. , Kusunolci , S. and co-authors. 2006. Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: Frequency and wind intensity analyses. J. Meteor Soc. Japan 84 , 259 - 276 .  

  49. Pielke , R. Jr., Landsea , C. , Mayfield , M. , Laver , J. and Pasch , R. 2006 . Reply to Hurricanes and global warming potential linkages and consequences . Bull. Amer. Meteor Soc . 87 , 628 – 631 .  

  50. Pielke , R. A. Jr . 2005 . Are there trends in hurricane destruction?. Nature 438 , Ell , doi: https://doi.org/10.1038/04426 .  

  51. Pielke , R. A. Jr. , Landsea , C. , Mayfield , M. , Laver , J. and Pasch , R. 2005 . Hurricanes and global warming . Bull. Amer Meteor. Soc . 86 , 1571 – 1575 .  

  52. Reynolds , R. W. and Smith , T. M. 1994 . Improved global sea surface temperature analyses using optimum interpolation . J. Climate 7 , 929 – 948 .  

  53. Reynolds , R. W. , Rayner , N. A. , Smith , T. M. , Stokes , D. C. and Wang , W. 2002 . An improved in situ and satellite SST analysis for climate . J. Climate 15 , 1609 – 1625 .  

  54. Roeckner , E. , Arpe , K. , Bengtsson , L. , Christoph , M. , Claussen , M. , and co-authors. 1996 . The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Tech. Rep. 218, Max-Planck Institute for Meteorology, Hamburg, Germany, 90 pp .  

  55. Roeckner , E. , Bäuml , G. , Bonaventura , L. , Brokopf , R. , Esch , M. and co-authors. 2003. The atmospheric general circulation model ECHAM5. Part I: Model description. Tech. Rep. 349, Max-Planck Institute for Meteorology, Hamburg, Germany, 127 pp .  

  56. Royer , J.-F. , Chauvin , F. , Timbal , B. , Araspin , P. and Grimal , D. 1998 . A GCM study of the impact of greenhouse gas increase on the frequency of occurrence of tropical cyclone . Climatic Change 38 , 307 – 343 .  

  57. Ryan , B. F. , Watterson , I. G. and Evans , J. L. 1992 . Tropical cyclone frequencies inferred from Gray’s yearly genesis parameter: Validation of GCM tropical climate . Geophys. Res. Lett . 19 , 1831 – 1834 .  

  58. Suarez , M. J. and Takacs , L. L. 1995 . Documentation of the Aries/GEOS dynamical core Version 2. Technical Report Series on Global Modelling and Data Assimilation, NASA Technical Memorandum 104606 Vol. 5 , Goddard Space Flight Center, Greenbelt, MD , USA , 58 pp .  

  59. Sugi , M. , Noda , A. and Sato , N. 2002 . Influence of global warming on tropical cyclone climatology: An experiment with the .TMA global model . J. Meteor Soc. Japan 80 , 249 – 272 .  

  60. Thorncroft , C. and Pytharoulis , I. 2001 . A dynamical approach to seasonal prediction of Atlantic tropical cyclone activity . Wea. Forecasting 16 , 725 – 734 .  

  61. Tsutsui , J. I. and Kasahara , A. 1996 . Simulated tropical cyclones using the National Center for Atmospheric Research community climate model . J. Geophys. Res. 101 , 15 013-15 032 .  

  62. Vitart , E 2006 . Seasonal forecasting of tropical storm frequency using a multi-model ensemble . Q. J. R. MeteoroL Soc . 132 , 647 – 666 , doi: https://doi.org/10.1256/qj.05.65 .  

  63. Vitart , F. and Anderson , J. L. 2001 . Sensitivity of Atlantic tropical storm frequency to ENSO and interdecadal variability of SSTs in an ensemble of AGCM integrations . J. Climate 14 , 533 – 545 .  

  64. Vitart , E Anderson , J. L. and Stern , W. F. 1997 . Simulation of interannual variability of tropical storm frequency in an ensemble of GCM integrations. J. Climate 10 , 745 - 760 .  

  65. Vitart , F. , Anderson , J. L. and Stern , W. F. 1999 . Impact of large-scale circulation on tropical storm frequency, intensity and location, simulated by an ensemble of GCM integrations . J. Climate 12 , 3237 – 3254 .  

  66. Vitart , F. , Anderson , D. and Stockdale , T. 2003 . Seasonal forecasting of tropical cyclone landfall over Mozambique . J. Climate 16 , 3932 – 3945 .  

  67. Vitart , F. D. and Stockdale , T. N. 2001 . Seasonal forecasting of tropical storms using coupled GCM integrations. Mon. Wea. Re v . 129 , 2521 – 2537 .  

  68. Walsh , K. 2004 . Tropical cyclones and climate change: unresolved issues . Clim. Res . 27 , 77 – 83 .  

  69. Walsh , K. J. , Fiorino , M. , Landsea , C. W. and McInnes , K. L. 2007 . Objectively determined resolution-dependent threshold criteria for the detection of tropical cyclones in climate models and reanalyses . J. Climate , in press .  

  70. Walsh , K. J. E. and Ryan , B. E 2000 . Tropical cyclone intensity increase near Australia as a result of climate change . J. Climate 13 , 3029 – 3036 .  

  71. Walsh , K. J. E. , Nguyen , K. C. and McGregor , J. L. 2004 . Fine-resolution regional climate model simulations of the impact of climate change on tropical cyclones near Australia . Clim. Dyn . 22 , 47 – 56 .  

  72. Wang , B. and Chan , J. C. L. 2002 . How strong ENSO events affect tropical storm activity over the western North Pacific . J. Climate 15 , 1643 – 1658 .  

  73. Watterson , I. G. , Evans , J. L. and Ryan , B. F. 1995 . Seasonal and interannual variability of tropical cyclogenesis: diagnostics from large-scale fields . J. Climate 8 , 3052 – 3066 .  

  74. Webster , P. J. , Holland , G. J. , Curry , J. A. and Chang , H.-R. 2005 . Changes in tropical cyclone number, duration, and intensity in a warming environment . Science 309 , 1844 – 1846 , doi: https://doi.org/10.1126/science.1116448 .  

  75. Wu , G. and Lau , N. C. 1992 . A GCM simulation of the relationship between tropical storm formation and ENSO. Mon. Wea. Re v . 120 , 958 – 977 .  

  76. Yoshimura , J. , Sugi , M. and Noda , A. 2006 . Influence of greenhouse warming on tropical cyclone frequency . J. Meteor Soc. Japan 84 , 405 – 428 .  

  77. Yumoto , M. , Matsuura , T. and Iizuka , S. 2003 . Interdecadal variability of tropical cyclone frequency over the western North pacific in a high-resolution atmosphere-ocean coupled GCM . J. Meteor Soc. Japan 81 , 1069 – 1086 .  

comments powered by Disqus