Start Submission Become a Reviewer

Reading: Thermal decay modes of a 2-D energy balance climate model

Download

A- A+
Alt. Display

Original Research Papers

Thermal decay modes of a 2-D energy balance climate model

Author:

Wei Wu

Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843-3150; Department of Atmospheric Sciences, University of North Dakota, Grand Forks, North Dakota 58202-9006, US
X close

Abstract

A complete series of non-orthogonal thermal decay modes (TDMs) of climate is derived from a two-dimensional (2-D) Energy Balance Climate Model (EBCM) and their properties are investigated. The orthogonality property is broken by the presence of the land—sea distribution through the effective heat capacity function. In the model, these mode amplitudes decay exponentially when the same component of forcing is made to vanish. If the projection of forcing is white noise in time, the mode amplitudes will have Lorentz spectral densities (i.e. first order Markov or first-order Autoregressive Process (ARI)) making the autocorrelation functions decay exponentially as well. TheTDMhave familystyle shapes: all oceans, Eurasian—African family, North American family, etc. When actual data are projected onto the mode patterns their time-series exhibit the same exponential decay behaviour. These modes are proven useful in studying the global surface temperature field. The development of the TDM theory makes it possible to analyse more generally time-dependent surface-temperature problems in a framework with physical interpretation.

How to Cite: Wu, W., 2007. Thermal decay modes of a 2-D energy balance climate model. Tellus A: Dynamic Meteorology and Oceanography, 59(5), pp.618–626. DOI: http://doi.org/10.1111/j.1600-0870.2007.00245.x
  Published on 01 Jan 2007
 Accepted on 23 Jan 2007            Submitted on 31 Jul 2006

References

  1. Bell , T. L. 1980 . Climate sensitivity from fluctuation dissipation: some simple model tests. J. Atmos. Sc i . 37 , 1700 – 1707 .  

  2. Cionni , I. , Visconti , G. and Sassi , F. 2004 . Fluctuation dissipation theorem in a general circulation model . Geophys. Res. Lett . 31 , L09206 , https://doi.org/10.1029/2004GL019739 .  

  3. Frame , D. J. , Booth , B. B. B. , Kettleborough , J. A., Stainforth , D. A. , Gregory , J. M. , Collins , M. and Allen , M. R. 2005 . Constraining climate forecasts: The role of prior assumptions. Geophys. Res. Lett . 32 , L09702 , https://doi.org/10.1029/2004GL022241 .  

  4. Gill , A. E. 1982 . Atmosphere-Ocean Dynamics . Academic Press , 662 pp .  

  5. Graves , C. E. , Lee , W.-H. and North , G. R. 1993 . New parametrizations and sensitivities for simple climate models . J. Geophys. Res . 98 , 5025 – 5036 .  

  6. Hasselmann , K. 1976 . Stochastic climate models. Part I: Theory . Tellus 28 , 473 – 484 .  

  7. Hegerl , G. C. , Crowley , T. J. , Hyde , W. T. and Frame , D. J. 2006 . Climate sensitivity constrained by temperature reconstructions over the past seven centuries . Nature 440 , 1029 – 1032 .  

  8. Horn , R. A. and Johnson , C. R. 1985 . Matrix Analysis . Cambridge University press , 561 pp .  

  9. Hyde , W. T. , Kim , K.-Y. , Crowley , T. J. and North , G. R. 1990 . On the relation between polar continentality & climate: studies with a nonlinear seasonal energy balance model . J. Geophys Res . 95 , 18653 – 18668 .  

  10. Kim , K.-Y. and North , G. R. 1992 . Seasonal cycle and second-moment statistics of a simple coupled climate system . J. Geophys. Res . 97 , 20437 – 20448 .  

  11. Kim , K.-Y. and North , G. R. 1993 . EOF analysis of surface temperature field in a stochastic climate model . J. Climate 6 , 1681 – 1690 .  

  12. Leith , C. E. 1975 . Climate response and fluctuation dissipation. J. Atmos. Sc i . 32 , 2022 – 2026 .  

  13. Lindzen , R. S. and Farrell , B. 1977 . Some realistic modifications of simple climate models. J. Atmos. Sc i . 34 , 1487 – 1501 .  

  14. North , G. R. and Coakley , J. A. 1979 . Differences between seasonal and mean annual energy balance model calculations of climate and climate change. J. Atmos. Sc i . 36 , 1189 – 1204 .  

  15. North , G. R. and Cahalan , R. E 1981 . Predictability in a solvable stochastic climate model. J. Atmos. Sc i . 38 , 504 – 513 .  

  16. North , G. R. , Cahalan , R. F. and Coakley , J. A. 1981 . Energy balance climate models . Rev. Geophys. Sp. Phys . 19 , 91 – 121 .  

  17. North , G. R. , Mengel , J. G. and Short , D. A. 1983 . A simple energy balance model resolving the seasons and the continents: Application to the Milankovitch theory of the ice ages . J. Geophys. Res . 88 , 6576 – 6586 .  

  18. North , G. R. , Bell , R. E. and Hardin , J. W. 1993 . Fluctuation dissipation in a general circulation model . Clim. Dyn . 8 , 259 – 264 .  

  19. Stevens , M. J. and North , G. R. 1996 . Detection of the climate response to the solar cycle. J. Atmos. Sc i . 53 , 2594 – 2608 .  

  20. Von Storch , J.-S. 2004 . On statistical dissipation in GCM-climate . Clim. Dyn . 23 , 1 – 15 .  

  21. Wu , W. 2005 . Linear analysis of surface temperature dynamics and climate sensitivity. Dissertation. Texas A&M University, College Station, USA, pp. 81.  

comments powered by Disqus