Start Submission Become a Reviewer

Reading: Cluster ensemble Kalman filter

Download

A- A+
Alt. Display

Original Research Papers

Cluster ensemble Kalman filter

Author:

Keston W. Smith

Woods Hole Oceanographic Institute, Woods Hole, MA, US
X close

Abstract

A modified ensemble Kalman filter (KF) is proposed which can enhance performance for highly non-linear prognostic models. The algorithm differs from the traditional ensemble KF by the addition of an expectation maximization step, which estimates the parameters of a Gaussian mixture model for the ensemble of forecast states. The algorithm is tested in twin experiments using a simple phytoplankton—zooplankton model.

How to Cite: Smith, K.W., 2007. Cluster ensemble Kalman filter. Tellus A: Dynamic Meteorology and Oceanography, 59(5), pp.749–757. DOI: http://doi.org/10.1111/j.1600-0870.2007.00246.x
2
Views
2
Downloads
  Published on 01 Jan 2007
 Accepted on 1 Mar 2007            Submitted on 6 Nov 2006

References

  1. Eknes , M. and Evensen , G. 2002 . An ensemble Kalman filter with a 1-D marine ecosystem model . J. Marine Sys . 36 , 75 – 101 .  

  2. Evensen , G. 1994 . Sequential data assimilation with a non-linear quasi-geostrophic model using Monte Carlo methods to forecast error statistics . J. Geophys. Res. 97(C11) , 17 905-17 924 .  

  3. Evensen , G. 2003 . The ensemble Kalman filter: theoretical formulation and practical implementation . Ocean Dyn . 53 , 343 – 367 .  

  4. Evensen , G. 2006 . Data Assimilation: The Ensemble Kalman Filter . Springer-Verlag , Berlin , Heidelberg , 279 pp .  

  5. Fraley , C. and Raftery , A. 2002 . Model based clustering, discriminant analysis, and density estimation . J. Am. Stat. Assoc . 97 ( 458 ), 611 – 631 .  

  6. Hu , X. and Xu , L. 2004 . Investigation on several model selection criteria for determining the number of cluster . Neural Infor Proc.—Lett. Rev . 4 ( 1 ), 1 – 10 .  

  7. Lorenz , E. N. 1963 . Deterministic nonperiodic flow. J. Atmos Sc i . 20 , 448 – 464 .  

  8. Miller , R. N. , Carter , E. E and Blue , S. T. 1999 . Data Assimilation into non-linear stochastic models . Tellus 51A , 167 – 194 .  

  9. Steele , J. H. and Henderson , E. W. 1992 . The role of predation in plankton models . J. Plankton Res . 14 ( 1 ), 157 – 172 .  

  10. van Leeuwen , P. J. 2003 . A variance minimizing filter for large-scale applications. Mon. Wea. Re v . 131 , 2071 – 2084 .  

comments powered by Disqus