Start Submission Become a Reviewer

Reading: Water vapour tomography using GPS phase observations: Results from the ESCOMPTE experiment

Download

A- A+
Alt. Display

Original Research Papers

Water vapour tomography using GPS phase observations: Results from the ESCOMPTE experiment

Authors:

T. Nilsson ,

Department of Radio and Space Science, Chalmers University of Technology, Onsala Space Observatory, Onsala, SE
X close

L. Gradinarsky,

Department of Radio and Space Science, Chalmers University of Technology, Onsala Space Observatory, Onsala, SE
X close

G. Elgered

Department of Radio and Space Science, Chalmers University of Technology, Onsala Space Observatory, Onsala, SE
X close

Abstract

Global Positioning System (GPS) tomography is a technique for estimating the 3-D structure of the atmospheric water vapour using data from a dense local network of GPS receivers. Several current methods utilize estimates of slant wet delays between the GPS satellites and the receivers on the ground, which are difficult to obtain with millimetre accuracy from the GPS observations. We present results of applying a new tomographic method to GPS data from the Expériance sur site pour contraindre les modéles de pollution atmosphérique et de transport d’emissions (ESCOMPTE) experiment in southern France. This method does not rely on any slant wet delay estimates, instead it uses the GPS phase observations directly.We show that the estimated wet refractivity profiles estimated by this method is on the same accuracy level or better compared to other tomographic methods. The results are in agreement with earlier simulations, for example the profile information is limited above 4 km.

How to Cite: Nilsson, T., Gradinarsky, L. and Elgered, G., 2007. Water vapour tomography using GPS phase observations: Results from the ESCOMPTE experiment. Tellus A: Dynamic Meteorology and Oceanography, 59(5), pp.674–682. DOI: http://doi.org/10.1111/j.1600-0870.2007.00247.x
1
Views
2
Downloads
  Published on 01 Jan 2007
 Accepted on 22 Feb 2007            Submitted on 21 Nov 2006

References

  1. Atmospheric Research . 2005 . Special issue on the ESCOMPTE field experiment . 74 .  

  2. Beutler , G. , Rothacher , M. , Schaer , S. , Springer , T. A. , Kouba , J. and co-authors. 1999 . The International GPS Service (IGS): An interdis-ciplinary service in support of Earth sciences. Adv. Space Res , 23 , 631 - 635 .  

  3. Bevis , M. , Businger , S. , Herring , T. A. , Rocken , C. , Anthes , R. A. and co-authors. 1992 . GPS meteorology: remote sensing of atmospheric water vapour using the global positioning system. J. Geophys. Res . 97 ( D14 ), 15 787 – 15 801 .  

  4. Bock , O. , Doerflinger , E. , Masson , F. , Walpersdorf , A. , Van-Baelen , J. and co-authors. 2004. GPS water vapour project associated to the ESCOMPTE programme: description and first results of the field experiment. Phy. Chem. Earth 29 , 149 - 157 .  

  5. Brown , R. G. and Hwang , P. Y. C. 1997 . Introduction to Random Signals and Applied Kalman Filtering . John Wiley & Sons , 3rd edition .  

  6. Champollion , C. , Mason , F. , Bouin , M.-N. , Walpersdorf , A. , Doerflinger , E. and co-authors. 2005. GPS water vapour tomography: preliminary results from the ESCOMPTE field experiment. Atmospheric Research, 74 , 253 - 274 .  

  7. Cros , B. , Durand , P. , Cachier , H. , Drobinslci , Ph. , Frejafon , E. and co-authors. 2004. The ESCOMPTE program: an overview. Atmospheric Research, 69 , 241 - 279 .  

  8. Elósegui , P. and Davis , J. 2003 . Accuracy assessment of GPS slant-path determinations. In Proc. International Workshop on GPS Meteorology , Tsukuba, Japan . URL http://dbx.cr.chibau.jp/Gps_Met/gpsmet/index.html .  

  9. Emardson , T. R. , Elgered , G. and Johansson , J. M. 1998 . Three months of continuous monitoring of atmospheric water vapour with a network of Global Positioning System receivers . J. Geophys. Res . 103 ( D2 ), 1807 – 1820 .  

  10. Flores , A. , de Arellano , J. V.-G. , Gradinarsky , L. P. and Rius , A. 2001 . Tomography of the lower troposphere using a small dense network of GPS receivers . IEEE Trans. Geosci. Remote Sensing 39 , 439 – 447 .  

  11. Gradinarsky , L. and Jarlemark , P. 2004 . Ground-based GPS tomography of water vapour: Analysis of simulated and real data . J. MeteoroL Soc. Japan 82 , 551 – 560 .  

  12. Hofmann-Wellenhof , B. , Lichtenegger , H. and Collins , J. 2001 . GPS: Theory and Practice. Springer-Verlag, 5th edition.  

  13. King , R. W. 2002 . Documentation for the GAMUT GPS analysis software . Technical report, MIT . URL http : //www-gpsg.mitedu/simon/gtgk/GAMIT.pdf .  

  14. Lutz , S. , Troller , M. , Somieslci , A. , Walpersdorf , A. , Doerflinger , E. and co-authors. 2004. GPS tomography and remote sensing techniques for water vapor determination in the ESCOMPTE campaign. In Proceedings of the IGS Workshop & Symposium, Berne, Switzerland. URL http://igscb.jpInasa.gov/ .  

  15. Miloshevich , L. M. , Viimel , H. , Whiteman , D. N. , Lesht , B. M. , Schmidlin , F. J. and co-authors. 2006. Absolute accuracy of water vapour measurements from six operational radiosonde types launched during AWEX-G and implications for AIRS validation. J. Geophys. Res . 111 , D09510 .  

  16. Nilsson , T. 2005 . Assessment of tomographic methods for estimation of atmospheric water vpor using ground-based GPS. Technical Report 6L , Dept. Radio Space Sci ., Chalmers Univ. Tech. Goteborg , Sweden .  

  17. Nilsson , T. and Gradinarsky , L. 2006 . Water vapour tomography using GPS phase observations: Simulaton results . IEEE Trans. Geosci. Remote Sensing 6 ( 14 ), 2927 – 2941 .  

  18. Nilsson , T. , Gradinarsky , L. and Elgered , G. 2005 . Estimating the 3-D structure of the atmospheric water vapor using GPS phase observations. In Proceedings of RadioVetenskap och Kommunikation, RVK 2005, 521-526, Linkoping, Sweden. URL http://www.es. isy.liu. se/rvk05/_fina1/00085UyliigccqA_PxHNvocCC.pdf.  

  19. Rocken , C. , Hove , T. Van, Johnson , J. , Solheim , F. , Ware , R. , Bevis , M. and co-authors . 1995 . GPS/STORM - GPS sensing of atmospheric water vapor for meteorology. J. Atmos. Oceanic TechnoL 12 , 468 - 478 .  

  20. Shoji , Y. , Nakamura , H. , Iwabuchi , T. , Aonashi , K. , Seko , H. and co-authors. 2004. Tsukuba GPS dense net campaign observations: improving in GPS analysis of slant path delay by stacking one-way postfit residuals. J. MeteoroL Soc. Jpn . 82 ( 1B ), 301 - 314 .  

  21. Tregoning , P. , Boers , R. , O’Brien , D. and Hendy , M. 1998 . Accuracy of absolute precipitable water vapour estimates from GPS observations . J. Geophys. Res . 103 , 28 701-28 710 .  

  22. Treuhaft , R. N. and Lanyi , G. E. 1987 . The effect of the dynamic wet troposphere on radio interferometric measurements . Radio Sc i . 22 , 251 – 265 .  

  23. Troller , M. , Biirki , B. , Cocard , M. , Geiger , A. and Kahle , H.-G. 2002 . 3-D refractivity field from GPS double difference tomography . Geophys. Res. Lett . 29 , 2149 .  

  24. Walpersdorf , A. , Bock , O. , Doerflinger , E. , Masson , F. , van Baelen , J. and co-authors. 2004. Data analysis of a dense GPS network operated during the escompte campaign: first results. Phys. Chem. Earth 29 ( 2-3 ), 201 - 211 .  

  25. Wang , J. , Cole , H. L. , Carlson , D. J. , Miller , E. R. , Beierle , K. and co-authors. 2002. Corrections of humidity measurement errors from the Vaisala RS-80 radiosonde — Application to TOGA-COARE data. J. Atmos. Oceanic TechnoL 19 , 981 - 1002 .  

  26. Wang , Z. , Wu , Y. , Zhang , K. and Meng , Y. 2005 . Triple-frequency method for high-order ionospheric refractive error modelling in GPS modernization . Journal of Global Positioning Systems 4 , 291 – 295 .  

  27. Webb , F. H. and Zumberge , J. E 1993 . An introduction to the GIPSY/OASIS-II. JPL Publ. D-11088 , Jet Propul. Lab ., Pasadena , California .  

  28. Zumberge , J. F. , Heflin , M. B. , Jefferson , D. C. , Watkins , M. M. and Webb , F. H. 1997 . Precise point positioning for the efficient and robust analysis of GPS data from large networks . J. Geophys. Res . 102 ( B3 ), 5005 – 5017 .  

comments powered by Disqus