Start Submission Become a Reviewer

Reading: The relative vorticity of ocean surface winds from the QuikSCAT satellite and its effects on...

Download

A- A+
Alt. Display

Original Research Papers

The relative vorticity of ocean surface winds from the QuikSCAT satellite and its effects on the geneses of tropical cyclones in the South China Sea

Authors:

Lei Wang ,

Department of Mathematics, Hong Kong University of Science and Technology, Hong Kong, CN
X close

Kai-Hon Lau,

Institute for the Environment, Hong Kong University of Science and Technology, Hong Kong; Atmospheric, Marine and Coastal Environment Program, Hong Kong University of Science and Technology, Hong Kong, CN
X close

Chi-Hung Fung,

Department of Mathematics, Hong Kong University of Science and Technology, Hong Kong, CN
X close

Jian-Ping Gan

Department of Mathematics, Hong Kong University of Science and Technology, Hong Kong; Atmospheric, Marine and Coastal Environment Program, Hong Kong University of Science and Technology, Hong Kong, CN
X close

Abstract

This study finds a relationship between the distribution of the seven-year mean relative vorticity of surface winds (RVSW) derived from 25-kilometer-resolution measurements of ocean winds from the Quick Scatterometer (QuikSCAT) satellite and the genesis locations of tropical cyclones (TCs) in the South China Sea (SCS). The results show the effects of the background mean RVSW on TC formation in the SCS. During the summer monsoon, TCs are formed in the northern SCS, where monsoon trough and coastal mountains contribute to positive mean RVSW, while during the winter monsoon TCs form in the southern SCS with positive mean RVSW. No TCs formed in the southern part of the SCS during the summer monsoon nor in the northern part during the winter monsoon during the period from 1945 to 2005, both of which coincide with negative mean RVSW induced by the coastal mountains. The mean RVSW prior to TC formation in regions around the TC genesis locations are calculated using the QuikSCAT measurements averaged over 3 d before the geneses of 36 TCs formed in the SCS from July 1999 to June 2006. The value of this mean RVSW in the SCS is 6.19 × 10−5 s−1, which is about 1.7 times the planetary vorticity at the TC genesis positions and about 5.0 times the seven-year monthly mean RVSW. The results of these quantitative calculations using the direct satellite observations support the hypothesis given by Gray in 1975 that above-normal low-level relative vorticity is necessary for the occurrence of tropical cyclogenesis.

How to Cite: Wang, L., Lau, K.-H., Fung, C.-H. and Gan, J.-P., 2007. The relative vorticity of ocean surface winds from the QuikSCAT satellite and its effects on the geneses of tropical cyclones in the South China Sea. Tellus A: Dynamic Meteorology and Oceanography, 59(4), pp.562–569. DOI: http://doi.org/10.1111/j.1600-0870.2007.00249.x
  Published on 01 Jan 2007
 Accepted on 22 Mar 2007            Submitted on 5 Dec 2006

References

  1. Bliven , L. F. , Branger , H. , Sobieski , P. W. and Giovanageli , J. P. 1993 . An analysis of scatterometer returns from a water agitated by artificial rain . Int. J. Remote Sens . 14 , 2315 – 2329 .  

  2. Chelton , D. B. , Schlax , M. G. , Freilich , M. H. and Milliff , R. F. 2004 . Satellite measurements reveal persistent small-scale features in ocean winds . Science 303 , 978 – 983 .  

  3. Chen , L. S. and Ding , Y. H. 1979 . An Introduction to the West Pacific Ocean Typhoons . Science Press , Beijing, China , p. 400 - 490 (In Chinese).  

  4. Chen , T.-C. , Weng , S. P. , Yamazalci , N. and Kiehne , S. 1998 . Interannual variation in the tropical cyclone formation over the western North Pacific. Mon. Wea. Re v . 126 , 1080 – 1090 .  

  5. Chia , H. H. and Ropelewski , C. F. 2002 . The interannual variability in the genesis location of tropical cyclones in the Northwest Pacific . J. Clim . 15 , 2934 – 2944 .  

  6. DeMaria , M. , Knaff , J. A. and Connell , B. H. 2001 . A tropical cyclone genesis parameter for the tropical Atlantic . Wea. Forcasting 16 , 219 – 233 .  

  7. Freilich , M. H. and Dunbar , R. S. 1999 . The accuracy of the NSCAT-1 vector winds: comparisons with NDBC buoys . J. Geophys. Res . 104 , 11 , 231-11 , 246 .  

  8. Gray , W. M. 1968 . Global view of the origin of tropical disturbances and storms. Mon. Wea. Re v . 96 , 669 – 700 .  

  9. Gray , W. M. 1975 . Tropical cyclone genesis. Atmospheric Science Paper 234, 121 pp. [Available from Dept. of Atmos. Sci., Colorado State University, Fort Collins, CO 805231  

  10. Katsaros , K. B. , Forde , E. B. , Chang , P. and Liu , W. T. 2001 . QuikSCAT’s SeaWinds facilitates early identification of tropical depressions in 1999 hurricane season . Geophys. Res. Lett . 28 , 1043 – 1046 .  

  11. Lau , K. H. , Zhang , Z. F. , Lam , H. Y. and Chen , S. J. 2003 . Numerical simulation of a South China Sea typhoon Leo (1999) . MeteoroL Atmos. Phys . 83 , 147 – 161 .  

  12. Li , T. , Fu , B. , Ge , X. , Wang , B. and Peng , M. 2003 . Satellite data analysis and numerical simulation of tropical cyclone formation . Geophys. Res. Lett . 30 , 2122 , doi: https://doi.org/10.1029/2003GL018556 .  

  13. Liang , B. Q. 1991 . Tropical atmospheric circulation system over the South China Sea . China Meteorology Press , Beijing, China , p. 100 - 224 (in Chinese) .  

  14. Liu , K. S. and Chan , J. C. L. 1999 . Size of tropical cyclones as inferred from ERS- I and ERS-2 data. Mon. Wea. Re v . 127 , 2992 – 3001 .  

  15. McBride , J. L. 1981 . Observational analysis of tropical cyclone formation. Part I: Basic definition of data sets. J. Atmos. Sc i . 38 , 1117 – 1131 .  

  16. McBride , J. L. 1995 . Tropical cyclone formation. Chap.3, Global perspectives on tropical cyclones. Tech. Doc. WMO/TD No. 693, World meteorological organization, Geneva, Switzerland, 63 - 105 .  

  17. Ritchie , E. A. and Holland , G. J. 1999 . Large-scale patterns associated with tropical cyclogenesis in the western Pacific. Mon. Wea. Re v . 127 , 2027 – 2043 .  

  18. Sharp , R. J. , Bourassa , M. A. and O’Brien , J. J. 2002 . Early detection of tropical cyclones using seawinds-derived voracity . Bull. Amer Meteor Soc . 83 , 879 – 889 .  

  19. Sobieski , P. , Craeye , C. and Bliven , L. F. 1999 . Scatterometric signatures of multivariate drop impacts on fresh and salt water surfaces . Int. J. Remote Sens . 20 , 2149 – 2166 .  

  20. Wang , L. , Fung , C. H. and Lau , K. H. 2007 . The upper ocean thermal structure and the genesis locations of tropical cyclones in the South China Sea . J Ocean University of China , 6 , 125 – 131 .  

  21. Wang , Z. L. and Fei , L. 1987 . Manual for Typhoon Prediction . China Meteorology Press , Beijing, China , 260 – 287 ( In Chinese ).  

  22. Weissman , D. E. , Bourassa , M. A. and Tongue , J. 2002 . Effects of rain rate and wind magnitude on SeaWinds scatterometer wind speed errors . J. Atmos. Oceanic TechnoL 19 , 738 – 746 .  

  23. Wu , D. S. , Zhao , X. , Feng , W. Z. and Ma , Y. 2005 . The statistical analyses to the local harmful typhoon of South China Sea. J. Tropic. Meteor 21 , 309 – 314 (In Chinese) .  

  24. Wyrtki , K. 1961 . Scientific results of marine investigations of the South China Sea and Gulf of Thailand 1959-1961. NAGA Rep.2, 50-195, Scripps Inst. of Oceanogr., La Jolla, Calif.  

  25. Xie , S. P. , Xie , Q. , Wang , D. X. and Liu , W. T. 2003 . Summer upwelling in the South China Sea and its role in regional climate variations . J. Geophys. Res . 108 ( C8 ), 3261 , doi: https://doi.org/10.1029/2003JC001867 , 17-1 — 17-13 .  

  26. Zhang , X. Y. and Lin , X. G. 2001 . Some statistical features of tropical cyclones originating from northeast South China Sea. J. Tropic. Oceanogr 20 , 61 – 67 (In Chinese ).  

  27. Zhang , Z. E 2003 . Study of South China Sea typhoons between 1999 and 2002 . PhD thesis , Hong Kong University of Science and Technology , 50 – 83 .  

comments powered by Disqus