Start Submission Become a Reviewer

Reading: How may tropical cyclones change in a warmer climate?

Download

A- A+
Alt. Display

Original Research Papers

How may tropical cyclones change in a warmer climate?

Authors:

Lennart Bengtsson,

Environmental Systems Science Centre, University of Reading, Whiteknights, PO Box 238, Reading, RG6 6AL, UK; Max Planck Institute for Meteorology, Bundesstraße 53, 20146 Hamburg, DE
X close

Kevin I. Hodges ,

Environmental Systems Science Centre, University of Reading, Whiteknights, PO Box 238, Reading, RG6 6AL, GB
X close

Monika Esch,

Max Planck Institute for Meteorology, Bundesstraße 53, 20146 Hamburg, DE
X close

Noel Keenlyside,

Leibniz Institute of Marine Sciences, IFM-GEOMAR, Düsternbrooker Weg 20, D-24105 Kiel, DE
X close

Luis Kornblueh,

Max Planck Institute for Meteorology, Bundesstraße 53, 20146 Hamburg, DE
X close

Jing-Jia Luo,

Climate Variations Research Program, Frontier Research Center for Global Change (FRCGC), 3173-25 Showamachi, Kanazawa-ku, Yokohama City, Kanagawa 236-0001, JP
X close

Toshio Yamagata

Climate Variations Research Program, Frontier Research Center for Global Change (FRCGC), 3173-25 Showamachi, Kanazawa-ku, Yokohama City, Kanagawa 236-0001, JP
X close

Abstract

Tropical cyclones (TC) under different climate conditions in the Northern Hemisphere have been investigated with the Max Planck Institute (MPI) coupled (ECHAM5/MPI-OM) and atmosphere (ECHAM5) climate models. The intensity and size of the TC depend crucially on resolution with higher wind speed and smaller scales at the higher resolutions. The typical size of the TC is reduced by a factor of 2.3 from T63 to T319 using the distance of the maximum wind speed from the centre of the storm as a measure. The full three-dimensional structure of the storms becomes increasingly more realistic as the resolution is increased.

For the T63 resolution, three ensemble runs are explored for the period 1860 until 2100 using the IPCC SRES scenario A1B and evaluated for three 30 yr periods at the end of the 19th, 20th and 21st century, respectively. While there is no significant change between the 19th and the 20th century, there is a considerable reduction in the number of the TC by some 20% in the 21st century, but no change in the number of the more intense storms. Reduction in the number of storms occurs in all regions. A single additional experiment at T213 resolution was run for the two latter 30-yr periods. The T213 is an atmospheric only experiment using the transient sea surface temperatures (SST) of the T63 resolution experiment. Also in this case, there is a reduction by some 10% in the number of simulated TC in the 21st century compared to the 20th century but a marked increase in the number of intense storms. The number of storms with maximum wind speeds greater than 50 m s−1 increases by a third. Most of the intensification takes place in the Eastern Pacific and in the Atlantic where also the number of storms more or less stays the same.

We identify two competing processes effecting TC in a warmer climate. First, the increase in the static stability and the reduced vertical circulation is suggested to contribute to the reduction in the number of storms. Second, the increase in temperature and water vapour provide more energy for the storms so that when favourable conditions occur, the higher SST and higher specific humidity will contribute to more intense storms. As the maximum intensity depends crucially on resolution, this will require higher resolution to have its full effect. The distribution of storms between different regions does not, at first approximation, depend on the temperature itself but on the distribution of the SST anomalies and their influence on the atmospheric circulation.

Two additional transient experiments at T319 resolution where run for 20 yr at the end of the 20th and 21st century, respectively, using the same conditions as in the T213 experiments. The results are consistent with the T213 study. The total number of TC were similar to the T213 experiment but were generally more intense. The change from the 20th to the 21st century was also similar with fewer TC in total but with more intense cyclones.

How to Cite: Bengtsson, L., Hodges, K.I., Esch, M., Keenlyside, N., Kornblueh, L., Luo, J.-J. and Yamagata, T., 2007. How may tropical cyclones change in a warmer climate?. Tellus A: Dynamic Meteorology and Oceanography, 59(4), pp.539–561. DOI: http://doi.org/10.1111/j.1600-0870.2007.00251.x
1
Views
  Published on 01 Jan 2007
 Accepted on 13 Apr 2007            Submitted on 22 Jan 2007

References

  1. Bengtsson , L. , Botzet , M. and Esch , M. , 1995 . Hurricane-type vortices in a general circulation model . Tellus 47A , 175 – 196 .  

  2. Bengtsson , L. , Botzet , M. and Esch , M. 1996 . Will greenhouse gas-induced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes? Tellus 48A , 57 – 73 .  

  3. Bengtsson , L. , Hodges , K. I. and Roeckner , E. 2006 . Storm tracks and climate change . J. Clim . 19 , 3518 – 3543 .  

  4. Bengtsson , L. , Hodges , K. I. and Esch , M. 2007 . Hurricane type vortices in a high-resolution global model: comparison with observations and Re-Analyses. Tellus 59A , in press .  

  5. Bister , M. and Emanuel , K. A. 1998 . Dissipative heating and hurricane intensity . Meteor. Atm. Phys . 52 , 233 – 240 .  

  6. Broccoli , A. J. and Manabe , S. 1990 . Can existing climate models be used to study anthropogenic changes in tropical cyclone climate? Geophys. Res. Lett . 17 , 1917 – 1920 .  

  7. Chan J. C. L. 2006 . Comments on “Changes in tropical cyclone number, duration, and intensity in a warming environment” . Science 311 , 1713b .  

  8. Chauvin , E , Royer , J. -E and DO-clue , M. 2006. Response of hurricane-type vortices to global warming as simulated by ARPEGE-Climat at high resolution. Clim. Dyn . 27 , 377 - 399 .  

  9. DeMaria , M. , Mainelli , M. , Shay , L. K. , Knaff , J. A. and Kaplan , J. 2005 . Further improvements to the statistical hurricane intensity prediction scheme (SHIPS) . Wea. Forecast . 20 , 531 – 543 .  

  10. Emanuel , K. A. 1987 . The dependence of hurricane intensity on climate . Nature 326 , 483 – 485 .  

  11. Emanuel , K. A. 1988 . The maximum intensity of hurricanes. J. Atmos. Sc i . 45 , 1143 – 1155 .  

  12. Emanuel , K. A. 2005 . Increasing destructiveness of tropical cyclones over the past 30 years . Nature 436 , 686 – 688 .  

  13. Emanuel , K. , DesAutels , C. , Holloway , C. and Korty , R. 2004 . Environmental control of tropical intensity. J. Atmos. Sc i . 61 , 843 – 858 .  

  14. Franks , W. M. 1977 . The structure and energetics of the tropical cyclone I. Storm structure. Mon. Wea. Re v . 105 , 1119 – 1135 .  

  15. Goldstein , H. 1980 . Finite rotations. In: Classical Mechanics , 2nd edn ., Addison-Wesley, Reading , MA , pp. 164 - 166 .  

  16. Gray , W. M. 1979 . Hurricanes: their formation, structure and likely role in the tropical circulation. In: Meteorology Over Tropical Oceans (ed. D. B. Shaw ), Roy. Meteor. Soc., James Glaisher House, Grenville Place, Bracknell, Berkshire, RG12 1BX , pp.155 - 218 .  

  17. Held , I. M. and Soden , B. J. 2006 . Robust responses of the hydrological cycle to global warming . J. Clim . 19 , 5686 – 5699 .  

  18. Holland G. J. 1997 . The maximum potential intensity of tropical cyclones. J. Atmos. Sc i . 54 , 2519 – 2541 .  

  19. Holton , J. R. 1992 . An Introduction to Dynamical Meteorology . Academic Press , San Diego , 511 pp .  

  20. IPCC IPCC200 . Climate Change 2001. The scientific basis. In: Contribution of Working Group I to the Third Assessment Report of the Intergovemmental Panel of Climate Change (eds J. T. Houghton , Y. Ding , D. J. Griggs , M. Noguer , P. J. vander Linden , X. Dai , K. Maskell and C. A. Johnson ), Cambridge University Press , pp. 881 .  

  21. Jablonowski , C. , Herzog , M. , Penner , J. E. , Oehmke , R. C. , Stout , Q. E and co-authors . 2004. Adaptive grids for weather and climate models, ECMWF Seminar Proceedings on Recent Developments in Numerical Methods for Atmosphere and Ocean Modeling, pp. 233-250, Reading, UK.  

  22. Jungclaus , H. , Keenlyside , N. , Botzet , M. , Haak , H. , Luo , J.-J. and co-authors . 2006. Ocean circulation and tropical variability in the coupled model ECHAM5/MPIOM. J. Clim . 19 , 3952-397 2 .  

  23. Kepert , J. D. 2006a . Observed boundary layer wind structure and balance in the hurricane core. Part I: Hurricane Georges. J. Atmos. Sc i . 63 , 2169 – 2193 .  

  24. Kepert , J. D. 2006b . Observed boundary layer wind structure and balance in the hurricane core. Part II: Hurricane Mitch. J. Atmos. Sc i . 63 , 2169 – 2193 .  

  25. Knutson , T. R. and Manabe , S. 1995 . Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean-atmosphere model . J. Clim . 8 , 2181 – 2199 .  

  26. Knutson , T. R. , Tuleya , R. E. , and Kurihara , Y. 1998 . Simulated increase of hurricane intensities in a CO2-warmed climate . Science 279 , 1018 – 1020 .  

  27. Knutson , T. R. and Tuleya , R. E. 1999 . Increased hurricane intensities with CO2-induced global warming as simulated using the GFDL hurricane prediction system . Clim. Dyn . 15 , 503 – 519 .  

  28. Knutson , T. K. , Tuleya , R. E. , Shen , W. and Ginnis , I. 2001 . Impact of CO2-induced warming on hurricane intensities as simulated in a hurricane model with ocean coupling . J. Clim . 14 , 2458 – 2468 .  

  29. Knutson , T. K. and Tuleya , R. E. 2004 . Impact of CO2-induced warming on simulated hurricane intensity and precipitation: sensitivity to the choice of climate model and convective parameterization . J. Clim . 17 , 3477 – 3495 .  

  30. Klotzbach , P. J. 2006 . Trends in global tropical cyclone activity over the past twenty years (1986-2005) . Geophys. Res. Lett . 33 , L10805 , doi: https://doi.org/10.1029/2006GL025881 .  

  31. Krishnamurti , T. N. , Pattnaik , S. , Stefanova , L. , Vijaya Kumar , T. S. V. and co-authors. 2005 . The hurricane intensity issue . Mon. Weather Rev . 133 , 1886– 1912 .  

  32. Landsea , C. W. , Harper , B. A. , Hoarau , K. and Knaff , J. A. 2006 . Can we detect trends in extreme tropical cyclones? Science 313 , 452 – 454 .  

  33. Lin , J.-L. , Kiladis , G. N. , Mapes , B. E. , Weickmann , K. M. , Sperber , K. R. and co-authors . 2006. Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Clim . 19 , 2665-269 0 .  

  34. Nakicenovic , N. , Alcamo , J. , Davis , G. , de Vries , B. , Fenhann , J. and co-authors. 2000. IPCC Special Report on Emissions Scenarios. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 599 pp .  

  35. Oldenborgh , G. J. van Philip , S. Y. and Collins , M. 2005 . El Nifio in a changing climate: a multi-model study . Ocean Sc i . 1 , 81 – 95 .  

  36. Oouchi , K. , Yoshimura , J. , Yoshimura , H. , Mizuta , R. , Kusunoki , S. and co-authors. 2006. Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: frequency and wind intensity analysis. J. MeteoroL Soc. Jpn . 84 , 259 - 276 .  

  37. Palmen , E. H. 1948 . On the formation and structure of tropical cyclones . Geophysica 3 , 26 – 38 .  

  38. Pham , M. , Boucher , O. and Hauglustaine , D . 2005 . Changes in atmospheric sulfur burdens and concentrations and resulting radiative forcings under IPCC SRES emission scenarios for 1990-2100. J. Geophys. Res . 110 , D06112 , doi: https://doi.org/10.1029/2004JDO05125 .  

  39. Rayner , N. A. , Brohan , P. , Parker , D. E. , Folland , C. K. , Kennedy , J. J. and co-authors. 2006. Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: the HadSST2 data set. J. Clim . 19 , 446 - 469 .  

  40. Roeckner , E. , Brasseur , G. P. , Giorgetta , M. , Jacob , D. , Jungclaus , J. and co-authors. 2006. Climate projections for the 21st century. Max Planck Institute for Meteorology, Internal Report, 28 pp. [available from Max Planck Institute for Meteorology, Bundesstr. 53,20146, Hamburg, Germany].  

  41. Royer , J.-E , Chauvin , E , Timbal , B. , Araspin , P. and Grimal , D. 1998 . A GCM study of impact of greenhouse gas increase on the frequency of occurrence of tropical cyclones . Clim. Dyn . 38 , 307 – 343 .  

  42. Ryan , B. E , Watterson , I. G. and Evans , J. L. 1992 . Tropical cyclone frequencies inferred from Gray’s yearly genesis parameter: Validation of GCM tropical climate . Geophys. Res. Lett . 19 , 1831 – 1834 .  

  43. Shen , B.-W. , Atlas , R. , Reale , O. , Lin , S. -J. , Chem , J.-D. and co-authors . 2006. Hurricane forecasts with a global mesoscale-resolving model: preliminary results with Hurricane Katrina (2005) . Geophys. Res. Lett . 33 , L13813 , doi: https://doi.org/10.1029/2006GL026143 .  

  44. Sriver , R. L. and Huber , M. 2006 . Low frequency variability in globally integrated tropical cyclone power dissipation . Geophys. Res. Lett . 33 , L11705 doi: https://doi.org/10.1029/2006GL026167 .  

  45. Sugi , M. , Noda , A. and Sato , N. 2002 . Influence of the global warming on tropical cyclone climatology: an experiment with the JMA global model . J. Meteorol. Soc. Jpn . 80 , 249 – 272 .  

  46. Tang , B. H. and Neelin , J. D. 2004 . ENSO influence on Atlantic hurricanes via tropospheric warming . Geophys. Res. Lett . 31 , L24204 , doi: https://doi.org/10.1029/2004GL021072 .  

  47. Thorncroft , C. and Hodges , K. 2001 . African easterly wave variability and its relationship to atlantic tropical cyclone activity . J. Clim . 14 , 1166 – 1179 .  

  48. Walsh , K. , Fiorino , M. , Landsea , C. and McIrmes , K. 2007 . Objectively-determined resolution-dependent threshold criteria for the detection of tropical cyclones in climate models and reanalyses. J. Clim ., in press  

  49. Watterson , I. G. , Evans , J. L. and Ryan , B. E 1995 . Seasonal and interannual variability of tropical cyclogenesis: diagnostics from large-scale fields . J. Clim . 8 , 3042 – 3066 .  

  50. Webster , P. J. , Holland , G. J. , Curry , J. A. and Chang , H. R. 2005 . Changes in tropical cyclone number, duration, and intensity in a warming environment . Science 309 , 1844 – 1846 .  

  51. WGNE WGNE199 . AMIP II guidelines. Atmospheric Model Intercomparison Project Newsletter, No. 8, AMP Project Office, Livermore, CA, 24 pp. [Available from AMIP Project Office, PCMDI, L-264, LLNL, P.O. Box 808, Livermore, CA 945501.  

  52. Wu , G. and Lau , N.-C. 1992 . A GCM simulation of the relationship between tropicalstorm formation and ENSO. Mon. Wea. Re v . 120 , 958 – 977 .  

  53. Yoshimura , J. , Masato , S. and Noda , A. 2006 . Influence of greenhouse warming on tropical cyclone frequency . J. Meteorol. Soc. Jpn . 84 ( 2 ), 405 – 428 .  

comments powered by Disqus