Bates , J. R. and McDonald , A. 1982 . Multiply upstream, semi-Lagrangian advective schemes: analysis and application to a multi-level primitive equation model. Mon. Wea. Re v . 110 , 1831 – 1842 .
Bates , J. R. , Moorthi , S. and Higgins , R. W. 1993 . A global multilevel atmospheric model using a vector semi—Lagrangian finite—difference scheme. Part I: adiabatic formulation. Mon. Wea. Re v . 121 , 244 – 263 .
Benard , P., 2003 . Stability of semi-implicit and iterative centered-implicit time discretization for various equation systems used in NVVP. Mon. Wea. Re v . 131 , 2479 – 2491 .
Benard , R, 2004 . On the use of a wider class of linear systems for the design of constant-coefficient semi-implicit time schemes in NVVP. Mon. Wea. Re v . 132 , 1319 – 1324 .
Benoit , R. , Desgagne , M. , Pellerin , R , Chortler , Y. and Desjardins , S. 1997 . The Canadian MC2: A Semi-Lagrangian, Semi-Implicit Wide-band Atmospheric Model Suited for Finescale Process Studies and Simulation. Mon. Wea. Re v . 125 , 2382 – 2415 .
Bubnova , R. , Hello , G. , Bernard , P. and Geleyn , J.-F. 1995 . Integration of the fully elastic equations cast in the hydrostatic pressure terrain-following coordinate in the framework of APREGE/Aladin NWP system. Mon. Wea. Re v . 123 , 515 – 535 .
Côté , J. and Staniforth , A. 1988 . A two-time-level semi-Lagrangian semi-implicit scheme for spectral models. Mon. Wea. Re v . 116 , 2003 – 2012 .
Davies , H. C. 1976 . A lateral boundary formulation for multilevel prediction models . Q. J. R. MeteoroL Soc . 102 , 405 – 418 .
Girard , C. , Benoit , R. and Desgagne , M. 2005 . Finescale Topography and the MC2 Dynamics Kernel. Mon. Wea. Rev . 133, 1463-1477. Golding , B. W. 1992. An efficient non-hydrostatic forecast model. Meteorol. Atmos. Phys . 50 , 89 - 103 .
Leslie , L. M. and Purser , R. J., 1991 . High-order numerics in an unstaggered three-dimensional time-split semi-Lagrangian forecast model. Mon. Wea. Re v . 119 , 1612 – 1623 .
Männik , A. 2003 . Implementation and validation of the non-hydrostatic numerical weather prediction model HIRLAM. Dissertationes Geophysicales Tartu University Press. 86 p.
Männik , A. and Room , R. 2001 . Non-hydrostatic adiabatic kernel for HIRLAM. Part II. Anelastic, hybrid-coordinate, explicit-Eulerian model. HIRLAM Technical Report 49 , 54 p. Available from http://hirlam.org/open/publications/TechReports/T’R49.pdf
Männik , A. , Room , R. and Luhamaa , A. 2003 . Nonhydrostatic generalization of a pressure-coordinate-based hydrostatic model with implementation in HIRLAM: validation of adiabatic core . Tellus 55A , 219 – 231 .
McDonald , A. 1986 . A semi-Lagrangian and semi-implicit two time level integration scheme. Mon. Wea. Re v . 114 , 824 – 830 .
McDonald , A. 1995 . The HIRLAM two time level, three dimensional semi-Lagrangian, semi-implicit, limited area, gridpoint model of the primitive equations . HIRLAIVI Technical Report 17 , Norrkoping , 1995, 25 pp .
McDonald , A. 1998 . Alternative extrapolations to find the departure point in a ‘two time level’ semi-Lagrangian integration. HIRLAM Technical Report No 34. Publisher: HIRLAM 4 Project, do Met Eireann, Glasnevi Hill, Dublin 9, Ireland. 17 pp. Available from the HIRLAM member institutes.
McDonald , A., 1999 . An examination of alternative extrapolations to find the departure point position in a ‘two-time-level’ semi-Lagrangian integration. Mon. Wea. Re v . 127 , 1985 – 1993 .
McDonald , A. and Bates , J. R. 1989 . Semi-Lagrangian integration of a grid-point shallow-water model on the sphere. Mon. Wea. Re v . 117 , 130 – 137 .
McDonald , A. and Haugen , J.-E. 1992 . A two-time-level, three-dimensional, semi-Lagrangian, semi-implicit, limited-area gridpoint model of the primitive equations. Mon. Wea. Re v . 120 , 2603 – 2621 .
McDonald , A. and Haugen , J.-E. 1993 . A two-time-level, three-dimensional, semi-Lagrangian, semi-implicit, limited-area gridpoint model of the primitive equations. Part II: extension to hybrid vertical coordinates. Mon. Wea. Re v . 121 , 2077 – 2087 .
Miller , M. J. 1974 . On the use of pressure as vertical co-ordinate in modelling convection . Q. J. R. MeteoroL Soc . 100 , 155 – 162 .
Miller , M. J. and Pearce , R. P. 1974 . A three-dimensional primitive equation model of cumulonimbus convection . Q. J. R. Meteorol. Soc . 100 , 133 – 154 .
Miller , M. J. and White , A. A. 1984 . On the nonhydrostatic equations in pressure and sigma coordinates . Q. J. R. MeteoroL Soc . 110 , 515 – 533 .
Purser , R. J. and Leslie , L. M. 1988 . A semi-implicit semi-Lagrangian finite-difference scheme using high-order spatial differencing on a nonstaggered grid. Mon. Wea. Re v . 116 , 2069 – 2080 .
Ritchie , H. and Tanguay , M. 1996 . A comparison of spatially averaged Eulerian and Semi-Lagrangian treatments of mountains. Mon. Wea. Re v . 124 , 167 – 181 .
Ritchie , H. , Temperton , C. , Simmons , A. , Hortal , M. , Davies , T. and co-authors. 1995 . Implementation of the Semi—Lagrangian method in a high—resolution version of the ECMWF forecast model. Mon. Wea. Rev . 123 , 489 - 514 .
Robert , A. J. 1969 . The integration of a spectral model of the atmosphere by the implicit method. Proc. WMO-IUGG Symposium on IVWP , Tokyo, Japan Meteorological Agency, VII , 19 - 24 .
Robert , A. 1981 . A stable numerical integration scheme for the primitive meteorological equations . Atmos. Ocean 19 , 35 – 46 .
Robert , A. 1982 . A semi-Lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations . J. Meteor Soc. Japan 60 , 319 – 325 .
Robert , A. , Henderson , J. and Thurnbull , C. 1972 . An implicit time integration scheme for baroclinic models of the atmosphere. Mon. Wea. Re v . 100 , 329 – 335 .
Robert , A. , Yee , T. L. and H. Richie , H. 1985 . A semi-Lagrangian and semi-implicit integration scheme for multi-level atmospheric models. Mon. Wea. Re v . 113 , 388 – 394 .
Rõõm , R. 1990 . General form of the equations of atmospheric dynamics in isobaric coordinates . Izvestiya, Atmospheric and Oceanic Physics 26 , 9 – 14 .
Rõõm , R. 2001 . Nonhydrostatic adiabatic kernel for HIRLAM. Part I: fundametals of nonhydrostatic dynamics in pressure-related co-ordinates. HIRLAIVI Technical Report 48 , 26 p . Available from http://hirlam.org/open/publications/TechReports/T’R48.pdf
Rõõm , R. and Männilc , A. 1999 . Response of different nonhydrostatic, pressure-coordinate models to orographic forcing. J. Atmos. Sc i . 56 , 2553 – 2570 .
Rõõm , R. and Männilc , A. 2002 . Nonhydrostatic adiabatic kernel for HIRLAM. Part BI: semi-implicit Eulerian scheme. HIRLAM Technical Report 55 , 29 p. Available from http://hirlam.org/open/publications/TechReports/TR55.pdf
Rõõm , R. , Männilc , A. and Luhamaa , A. 2006 . Nonhydrostatic adiabatic kernel for HIRLAM. Part IV: semi-implicit Semi-Lagrangian scheme. HIRLAIVI Technical Report 65 , 43 p. Available from http://hirlam.org/open/publications/TechReports/TR65.pdf
Simmons , A. J. and Burridge , D. M. 1981 . An energy and angular momentum conserving vertical finite difference scheme and hybrid vertical coordinates. Mon. Wea. Re v . 109 , 758 – 766 .
Tanguay , M. , Simard , A. and Staniforth , A. 1989 . A three-dimensional semi-Lagrangian scheme for the Canadian regional finite-element forecast model. Mon. Wea. Re v . 117 , 1861 – 1871 .
Tanguay , M. , Robert , A. and Laprise , R. 1990 . A semi—implicit semi—Lagrangian fully compressible regional model. Mon. Wea. Re v . 118 , 1970 – 1980 .
Temperton , C. and Staniforth , A. 1987 . An efficient two-time-level semi-Lagrangian semi-implicit integration scheme . Q. J. R. MeteoroL Soc . 113 , 1025 – 1039 .
Undén , P. , Rontu , L. , Järvinen , H. , Lynch , P., Calvo , and co-authors . 2002. HIRLAM-5 Scientific Documentation, HIRLAM-5 Project, do Per Undén SMHI, S-60I 76 Norrkoping, SWEDEN, 144 p. Available from http://hirlam.org/open/publications/SciDoc_Dec2002.pdf
White , A. A. 1989 . An extended version of nonhydrostatic, pressure coordinate model . Q. J. R. MeteoroL Soc . 115 , 1243 – 1251 .