Start Submission Become a Reviewer

Reading: Non-hydrostatic semi-elastic hybrid-coordinate SISL extension of HIRLAM. Part II: numerical ...

Download

A- A+
Alt. Display

Original Research Papers

Non-hydrostatic semi-elastic hybrid-coordinate SISL extension of HIRLAM. Part II: numerical testing

Authors:

Rein Rõõm ,

Environmental Physics, Tartu University, likooli 18, 50090 Tartu, EE
X close

Aarne Männik,

Environmental Physics, Tartu University, likooli 18, 50090 Tartu, EE
X close

Andres Luhamaa,

Environmental Physics, Tartu University, likooli 18, 50090 Tartu, EE
X close

Marko Zirk

Environmental Physics, Tartu University, likooli 18, 50090 Tartu, EE
X close

Abstract

The semi-implicit semi-Lagrangian (SISL), two-time-level, non-hydrostatic numerical scheme, based on the nonhydrostatic, semi-elastic pressure-coordinate equations, is tested in model experiments with flow over given orography (elliptical hill, mountain ridge, system of successive ridges) in a rectangular domain with emphasis on the numerical accuracy and non-hydrostatic effect presentation capability. Comparison demonstrates good (in strong primary wave generation) to satisfactory (in weak secondary wave reproduction in some cases) consistency of the numerical modelling results with known stationary linear test solutions. Numerical stability of the developed model is investigated with respect to the reference state choice, modelling dynamics of a stationary front. The horizontally area-mean reference temperature proves to be the optimal stabilitywarrant. The numerical scheme with explicit residual in the vertical forcing term becomes unstable for cross-frontal temperature differences exceeding 30 K. Stability is restored, if the vertical forcing is treated implicitly, which enables to use time steps, comparable with the hydrostatic SISL.

How to Cite: Rõõm, R., Männik, A., Luhamaa, A. and Zirk, M., 2007. Non-hydrostatic semi-elastic hybrid-coordinate SISL extension of HIRLAM. Part II: numerical testing. Tellus A: Dynamic Meteorology and Oceanography, 59(5), pp.661–673. DOI: http://doi.org/10.1111/j.1600-0870.2007.00253.x
  Published on 01 Jan 2007
 Accepted on 19 Mar 2006            Submitted on 9 Aug 2006

References

  1. Asselin , R. A. 1972 . Frequency filter for time integrations. Mon. Wea. Re v . 100 , 487 – 490 .  

  2. Baines , P. G. 1995 . Topographic Effects in Stratified Flows . Cambridge Univ. Press , 482 pp .  

  3. Benard , P. 2003 . Stability of semi-implicit and iterative centered-implicit time discretization for various equation systems used in NWP. Mon. Wea. Re v . 131 , 2479 – 2491 .  

  4. Benard , P. 2004 . On the use of a wider class of linear systems for the design of constant-coefficient semi-implicit time schemes in NWP. Mon. Wea. Re v . 132 , 1319 – 1324 .  

  5. Bouttier , F. 2002 . Non-hydrostatic dynamical core intercomparisons, Workshop report of HIRLAM Workshop on Mesoscale Modelling, Dublin 14-16 October 2002,52-60, Available from HIRLAM member institutes or http://hirlam . org/open/publicationsalLworkshops/mesoscaleDublinOct 02  

  6. Bubnova , R. , Hello , G. , Bernard , P. and Geleyn , J.-F. 1995 . Integration of the fully elastic equations cast in the hydrostatic pressure terrain-following coordinate in the framework of APREGE/Aladin NWP system. Mon. Wea. Re v . 123 , 515 – 535 .  

  7. Davies , H. C. 1976 . A lateral boundary formulation for multilevel prediction models . Q. J. R. Meteorol. Soc . 102 , 405 – 418 .  

  8. Girard , C. , Benoit , R. and Desgagne , M. 2005 . Finescale topography and the MC2 dynamics kernel. Mon. Wea. Re v . 133 , 1463 – 1477 .  

  9. Ikawa , M. and Saito , K. 1991 . Description of a nonhydrostatic model developed at the Forecast Research Department of the MRI . Technical Reports of the MRI , 28 , 238 pp .  

  10. Klemp , J. B. , Skamarock , W. C. and Fuhrer , O. 2003 . Numerical consistency of metric terms in terrain-following coordinates. Mon. Wea. Re v . 131 , 1229 – 1239 .  

  11. Laprise , R., 1992 . The Euler equations of motion with hydrostatic pressure as an independent variable. Mon. Wea. Re v . 120 , 197 – 207 .  

  12. Laprise R. and Peltier , W. R. 1989 . On the structural characteristics of steady finite-amplitude mountain waves over bell-shaped topography. J. Atmos. Sc i . 46 , 586 – 595 .  

  13. Männilc , A. 2003 . Implementation and validation of the nonhydro-static adiabatic core of the numerical weather prediction model HIRLAM . Dissertationes Geophysicales Universitatis Tartuensis , pp. 88 .  

  14. Männilc , A. and Room , R. 2001 . Non-hydrostatic adiabatic kernel for HIRLAM. PartAnelastic, hybrid-coordinate, explicit-Eulerian model. HIRLAIVI Technical Report, 49, p. 54 Available from the HIRLAM member institutes or http://hirlam.org/open/publications/TechReports/T’R49ab.html  

  15. Männilc , A. , Room , R. and Luhamaa , A. 2003 . Nonhydrostatic generalization of a pressure-coordinate-based hydrostatic model with implementation in HIRLAM: validation of adiabatic core . Tellus 55A , 219 – 231 .  

  16. McDonald , A. 1999 . An examination of alternative extrapolations to find the departure point position in a ‘two-time-level’ semi-Lagrangian integration. Mon. Wea. Re v . 127 , 1985 – 1993 .  

  17. McDonald A. and Haugen , J.-E. 1993 . A two-time-level, three-dimensional, semi-Lagrangian, semi-implicit, limited-area gridpoint model of the primitive equations. Part Extension to hybrid vertical coordinates. Mon. Wea. Re v . 121 , 2077 – 2087 .  

  18. Miller , M. J. 1974 . On the use of pressure as vertical co-ordinate in modelling convection . Q. J. R. MeteoroL Soc . 100 , 155 – 162 .  

  19. Miller , M. J. and Pearce , R. P. 1974 . A three-dimensional primitive equation model of cumulonimbus convection . Q. J. R. MeteoroL Soc . 100 , 133 – 154 .  

  20. Miller , M. J. and White , A. A. 1984 . On the nonhydrostatic equations in pressure and sigma coordinates . Q. J. R. MeteoroL Soc . 110 , 515 – 533 .  

  21. Nance , L. B. and Durran , D. 1998 . A modelling study of nonstationary trapped lee waves. Part II: Nonlinearity. J. Atmos. Sc i . 55 , 1429 – 1445 .  

  22. Pinty , J.-P. , Benoit , R. , Richard , E. and Laprise , R. 1995 . Simple tests of a semi-implicit semi-Lagrangian model on 2D mountain wave problems. Mon. Wea. Re v . 123 , 3042 – 3058 .  

  23. Ritchie , H. , Temperton , C. , Simmons , A. , Hortal , M. , Davies , T. , and co-authors. 1995 . Implementation of the Semi-Lagrangian method in a high-resolution version of the ECMWF forecast model. Mon. Wea. Rev . 123 , 489 - 514 .  

  24. Richie , H. and Tanguay , M. 1996 . A comparison of spatially averaged Eulerian and Lagrangian treatments of mountains. Mon. Wea. Re v . 124 , 167 – 181 .  

  25. Robert , A. 1969 . The integration of a spectral model of the atmosphere by the implicit method. Proc. WMO/IUGG Symposium on NWP , Japan Meteorological Society, Tolcio , Japan , 19 - 24 .  

  26. Room , R. and Männilc , A. 1999 . Response of different nonhydrostatic, pressure-coordinate models to orographic forcing. J. Atmos. Sc i . 56 , 2553 – 2570 .  

  27. Room , R. , Männilc , A. and Luhamaa , A. 2006 . Non-hydrostatic , semi-Lagrangian , semi-implicit adiabatic kernel for HIRLAM. Part I: numerical scheme . Tellus , in press .  

  28. Room , R. and Zirk , M. 2007 . Amplitude factorization method in the atmospheric gravitywave equation . Communications in Computational Physics . 2 , 993 – 1006 .  

  29. Schär , C. , Leuenberger , D. , Furher , O. , Liithi , D. and Girard , C. 2002 . A new terrain-following vertical coordinate formulation for atmospheric prediction models. Mon. Wea. Re v . 130 2459 – 2480 .  

  30. Shuns , G. and Broad , A. 1993 . A case study of lee waves over the Lake District in northern England . Q. J. R. Meteord. Soc . 119 , 377 – 409 .  

  31. Simmons , A. J. , Hoskins , B. J. and Burridge , D. M. 1978 . Stability of the semi—implicit method of time integration. Mon. Wea. Re v . 106 , 405 – 412 .  

  32. Tanguay , M. , Robert , A. and Laprise , R. 1990 . A semi—implicit semi—Lagrangian fully compressible regional model. Mon. Wea. Re v . 118 , 1970 – 1980 .  

  33. Unden , P. , Rontu , L. , Järvinen , H. , Lynch , P. , Calvo , J. , and co-authors. 2002. HIRLAM-5 Scientific Documentation, HIRLAIVI-5 Project, do Per Undén SMHI, S-60I 76 Norrkoping, SWEDEN, 144 p. Available from the HIRLAM member institutes or http://hirlam.org/open/publications/SciDoc_Dec2002.pdf  

  34. White , A. A. 1989 . An extended version of nonhydrostatic, pres-sure coordinate model . Q. J. R. MeteoroL Soc . 115 , 1243 – 1251 .  

comments powered by Disqus