Start Submission Become a Reviewer

Reading: Four-dimensional local ensemble transform Kalman filter: numerical experiments with a global...

Download

A- A+
Alt. Display

Original Research Papers

Four-dimensional local ensemble transform Kalman filter: numerical experiments with a global circulation model

Authors:

John Harlim ,

Department of Mathematics and Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742; Courant Institute of Mathematical Sciences, New York University, 251 Mercer st., New York, NY 10012, US
X close

Brian R. Hunt

Department of Mathematics and Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, US
X close

Abstract

We present a four-dimensional ensemble Kalman filter (4D-LETKF) that approximately and efficiently solves a variational problem similar to that solved by 4D-VAR, and report numerical results with the Simplified-Parametrized primitive Equation Dynamics model, a simplified global atmospheric model. We discuss the relationship of 4D-LETKF to other ensemble Kalman filters and, in our simulations, compare it with two simpler approaches to assimilating asynchronous observations.

We find that 4D-LETKF significantly improves on the approach of treating asynchronous observations as if they occur at the analysis time. For a sufficiently short analysis time interval, the approach of computing innovations from the background state at the observation times and treating those innovations as if they occur at the analysis time is comparable to 4D-LETKF, but for longer analysis intervals, we find that 4D-LETKF is superior to this approach.

How to Cite: Harlim, J. and Hunt, B.R., 2007. Four-dimensional local ensemble transform Kalman filter: numerical experiments with a global circulation model. Tellus A: Dynamic Meteorology and Oceanography, 59(5), pp.731–748. DOI: http://doi.org/10.1111/j.1600-0870.2007.00255.x
1
Views
  Published on 01 Jan 2007
 Accepted on 27 Apr 2007            Submitted on 31 Aug 2006

References

  1. Anderson , J. L. 2001 . An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Re v . 129 , 2884 – 2903 .  

  2. Anderson , J. L. and Anderson , S. L. 1999 . A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Re v . 127 , 2741 – 2758 .  

  3. Bishop , C. H. , Etherton , B. J. and Majumdar , S. J. 2001 . Adaptive sampling with the ensemble transform Kalman filter part I: the theoretical aspects. Mon. Wea. Re v . 129 , 420 – 436 .  

  4. Buehner , M. 2005 . Ensemble-derived stationary and flow-dependent background error covariances: evaluation in a quasi-operational NVVP setting . Quart. J. Roy. Met. Soc . 131 , 1013 – 1043 .  

  5. Burgers , G. , van Leeuwen , P. J. and Evensen , G. 1998 . On the analysis scheme in the ensemble Kalman filter. Mon. Wea. Re v . 126 , 1719 – 1724 .  

  6. Courtier , P. , Thepaut , J.-N. and Hollingsworth , A. 1994 . A strategy for operational implementation of 4D-VAR, using an incremental approach . Quart. J. Roy. Met. Soc . 120 , 1367 – 1387 .  

  7. Courtier , P. , Andersson , E. , Heckley , W. , Pailleux , J. , Vasiljevic , D. and co-authors. 1998 . The ECMWF implementation of three-dimensional variational assimilation . Quart. J. Roy. Met. Soc . 124 , 1783– 1807 .  

  8. Le Dimet , F.-X. and Talagrand , O. 1986 . Variational algorithm for analysis and assimilation of meteorological observations: theoretical aspects . Tellus 38A , 97 – 110 .  

  9. Evensen , G. 1994 . Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics . J. Geophys. Res . 99 , 10 143-10 162 .  

  10. Fertig , E. J. , Harlim , J. and Hunt , B. R. 2007 . A comparative study of 4D-VAR and a four-dimensional ensemble Kalman filter: perfect model simulations with Lorenz-96 . Tellus 59A , 96 – 100 .  

  11. Fisher , M. and Courtier , P. 1995 . Estimating the covariance matrix of analysis and forecast error in variational data assimilation . ECMWF Tech. Memo . 220 , 5pp .  

  12. Gustafsson , N. , Berre , L. , Hörnquist , S. , Huang , X.-Y. , Lindskog , M. and co-authors. 2001. Three-dimensional variational data assimilation for a limited area model. Part I: general formulation and the background error constraint. Tellus 53A , 425 - 446 .  

  13. Hamill , T. M. , Whitaker , J. S. and Snyder , C. 2001 . Distance-dependent filtering of background error covariance estimates in an ensemble Kalman Filter. Mon. Wea. Re v ., 129 , 2776 – 2790 .  

  14. Harlim , J., 2006 . Errors in the initial conditions for numerical weather prediction: a study of error growth patterns and error reduction with ensemble filtering, PhD dissertation, University of Maryland.  

  15. Houtekamer , P. L. and Mitchell , H. L. 1998 . Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Re v . 126 , 796 – 811 .  

  16. Houtekamer , P. L. and Mitchell , H. L. 2001 . A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Re v . 129 , 123 – 137 .  

  17. Huang , X.-Y. , Morgensen , K. S. , and Yang , X. 2002 . First-guess at the appropriate time: the HIRLAM implementation and experiments. In Proceedings, HIRLAM workshop on variational data assimilation and remote sensing, Finland, 28 - 43 .  

  18. Hunt , B. R. , Kalnay , E. , Kostelich , E. J. , Ott , E. , Patil , D. J. and co-authors. 2004. Four-dimensional ensemble Kalman filtering. Tellus 56A , 273 - 277 .  

  19. Hunt , B. R. , Kostelich , E. J. and Szunyogh , J. 2007. Efficient data assimilation for a spatiotemporal chaos: a local ensemble transform Kalman filter. Physica D , 230 , 112 - 126 .  

  20. Keppenne , C. 2000 . Data assimilation into a primitive-equation model with a parallel ensemble Kalman filter. Mon. Wea. Re v . 128 , 1971 – 1981 .  

  21. Lindskog , M. , Gustafsson , N. , Navascues , B. , Mogensen , K. S. , Huang , X.-Y. and co-authors. 2001. Three-dimensional variational data assimilation for a limited area model. Part II: observation handling and data assimilation experiments. Tellus 53A , 447 - 468 .  

  22. Lorene , A. C. 2003 . The potential of the ensemble Kalman filter for NWP - a comparison with 4D-VAR . Quart. J. Roy. Met. Soc . 129 , 3183 – 3203 .  

  23. Lorenz , E .N., 1996 . Predictability—a problem partly solved . In: Proceedings on Predictability , held at ECMWF on 4-8 September 1995 , 1 – 18 .  

  24. Molteni , F. 2003 . Atmospheric simulations using a GCM with simplified physical parametrizations, I: model climatology and variability in multi-decadal experiments . Clim. Dyn . 20 , 175 – 191 .  

  25. Ott , E. , Hunt , B. R. , Szunyogh , I. , Zimin , A. V. , Kostelich , E. J. and co-authors. 2004. A local ensemble Kalman filter for atmospheric data assimilation. Tellus 56A , 415 - 428 .  

  26. Rabier , F. , Thepaut , J.-N. and Courtier , P. 1998 . Extended assimilation and forecast experiments with a four-dimensional variational assimilation system . Quart. J. Roy. Met. Soc . 124 , 1 – 39 .  

  27. Rabier , F. , Järvinen , H. , Mahfouf , J. -E and Simmons , A. 2000. The ECMWF operational implementation of four-dimensional variational assimilation: experimental results with simplified physics. Quart. J. Roy. Met. Soc . 126 , 1143-117 0 .  

  28. Tippett , M. K. , Anderson , J. L. , Bishop , C. H. , Hamill , T. M. and Whitaker , J. S. 2003 . Ensemble square-roots filters. Mon. Wea. Re v . 131 , 1485 – 1490 .  

  29. Wang , X. , Bishop , C. H. and Julier , S. J. 2004 . Which Is better, an ensemble of positive-negative pairs or a centered spherical simplex ensemble?. Mon. Wea. Re v . 132 , 1590 – 1605 .  

  30. Wang , X. , Snyder , C. and Hamill , T. M. 2007 . On the theoretical equivalence of differently proposed ensemble-3DVAR hybrid analysis schemes. Mon. Wea. Re v . 135 , 222 – 227 .  

  31. Whitaker , J. S. and Hamill , T. M. 2002 . Ensemble data assimilation without perturbed observations. Mon. Wea. Re v . 130 , 1913 – 1924 .  

  32. Zupanslci , M. 2005 . Maximum likelihood ensemble filter: theoretical aspects. Mon. Wea. Re v . 133 , 1710 – 1726 .  

comments powered by Disqus