Start Submission Become a Reviewer

Reading: Characterization of the multiple equilibria regime in a global ocean model

Download

A- A+
Alt. Display

Original Research Papers

Characterization of the multiple equilibria regime in a global ocean model

Author:

Henk A. Dijkstra

Institute for Marine and Atmospheric Research Utrecht, Department of Physics and Astronomy, Utrecht University, Princetonplein 5, 3584 Utrecht, NL
X close

Abstract

Low-resolution global ocean models display hysteresis behaviour when forced with an anomalous freshwater input into the northern North Atlantic. Of central importance in this hysteresis behaviour is the existence of so-called saddle-node bifurcations. In this paper, focus is on the physical characterization of the multiple equilibrium regime using a fully implicit global ocean model for which bifurcation diagrams can be explicitly computed. The physics of the position of the relevant saddle-node bifurcation in parameter space is clarified and a modification of an earlier suggested diagnostic of the presence of the multiple equilibrium regime is proposed. The relevance of this indicator for coupled climate models is shown by studying the sensitivity of the multiple equilibria regime to changes in the horizontal and vertical diffusivities of the model.

How to Cite: Dijkstra, H.A., 2007. Characterization of the multiple equilibria regime in a global ocean model. Tellus A: Dynamic Meteorology and Oceanography, 59(5), pp.695–705. DOI: http://doi.org/10.1111/j.1600-0870.2007.00267.x
1
Views
  Published on 01 Jan 2007
 Accepted on 7 Jun 2007            Submitted on 11 Feb 2007

References

  1. Bryan , F. O. 1986 . High-latitude salinity effects and interhemispheric thermohaline circulations . Nature 323 , 301 – 304 .  

  2. Bryan , K. and Lewis , L. J. 1979 . A water mass model of the world ocean . J. Geophys. Res . 84 , 2503 – 2517 .  

  3. Bryden , H. L. , Longworth , H. R. and Cunnigham , S. A. 2005 . Slowing down of the Atlantic meridional overturning circulation at 25° . Nature 438 , 655 – 657 .  

  4. Clark , P. U. , Pisias , N. G. , Stocker , T. F. and Weaver , A. J. 2002 . The role of the thermohaline circulation in abrupt climate change . Nature 415 , 863 – 869 .  

  5. De Vries , P. and Weber , S. L. 2005 . The Atlantic freshwater budget as a diagnostic for the existence of a stable shut down of the meridional overturning circulation. Geophys. Res. Lett . 32 ( No.9 ), L09606 .  

  6. Dijkstra , H. A. 2005 . Nonlinear Physical Oceanography: A Dynamical Systems Approach to the Large Scale Ocean Circulation and El 2nd Revised and Enlarged edition. Springer , New York , 532 pp .  

  7. Dijkstra , H. A. and Weijer , W. 2005 . Stability of the global ocean circulation: basic bifurcation diagrams . J. Phys. Oceanogr . 35 , 933 – 948 .  

  8. England , M. H. 1993 . Representing the global-scale water masses in ocean general circulations models . J. Phys. Oceanogr 23 , 1523 – 1552 .  

  9. Latif , M. , Roeckner , E. , Mikolajewicz , U. and Voss , R. 2000 . Tropical stabilization of the thermohaline circulation in a greenhouse warming simulation . J. Climate 13 , 1809 – 1813 .  

  10. Levitus , S. 1994 . World Ocean Atlas 1994, Volume 4: Temperature. NOAA/NESDIS E, US Department of Commerce, Washington DC, 0C21, 1 - 117 .  

  11. Manabe , S. and Stouffer , R. J. 1994 . Multiple-century response of a coupled ocean-atmosphere model to an increase of atmospheric carbon dioxide. J. Climate 7 , 5 - 23 .  

  12. Manabe , S. and Stouffer , R. J. 1999 . Are two modes of thermohaline circulation stable? Tellus 51A , 400 - 411 .  

  13. McAvaney , B. 2001 . Model evaluation. In: Climate Change 2001: The Scientific Basis, Chapter 8 (eds J. T. Houghton , Y. Ding , D. J. Griggs , M. Noguer , P. J. van der Linden and co-editors ). Cambridge University Press , Cambridge, UK , pages 225 - 256 .  

  14. Rahmstorf , S. 1995 . Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature 378 , 145 - 149.  

  15. Rahmstorf , S. 1996 . On the freshwater forcing and transport of the Atlantic thermohaline circulation. Clim. Dyn . 12 , 799 – 811 .  

  16. Rahmstorf , S. 2000 . The thermohaline circulation: a system with dangerous thresholds? Clim. Change 46 , 247 – 256 .  

  17. Rahmstorf , S. , Crucifix , M. , Ganopolski , A. , Goosse , H. , Kamenlcovich , I. and co-authors. 2005 . Thermohaline circulation hysteresis: a model intercomparison . Geophys. Res. Lett . L23605 , https://doi.org/10.1029/2005GL023655,1-5 .  

  18. Schmittner , A. , Latif , M. and Schneider , B. 2005 . Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations. Geophys. Res. Lett . L23710 , https://doi.org/10.1029/2005GL024368,1-4 .  

  19. Stocker , T. F. , Wright , D. G. and Mysak , L. A. 1992 . A zonally averaged, coupled ocean-atmosphere model for paleoclimate studies . J. Climate 5 , 773 – 797 .  

  20. Stommel , H. 1961 . Thermohaline convection with two stable regimes of flow . Tellus 2 , 244 – 230 .  

  21. Stouffer , R. J. , Yin , J. , Gregory , J. M. , Dixon , K., W. , Spelman , M. J. and co-authors . 2006 . Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Climate 19 , 1365 - 1387 .  

  22. Straughan , B. 2004 . The Energy Method, Stability and Nonlinear Convection 2nd Edition . Springer-Verlag , New York .  

  23. Thorpe , R. B. , Gregory , J. M., Johns , T. C. , Wood , R. A. and Mitchell , J. F. B. 2001 . Mechanisms determining the Atlantic thermohaline circulation response to greenhouse gas forcing in a non-flux-adjusted coupled climate model. J. Climate 14 , 3102 - 3116 .  

  24. Trenberth , K. E. , Olson , J. G. and Large , W. G. 1989 . A global ocean wind stress climatology based on ECMWF analyses . Technical report, National Center for Atmospheric Research, Boulder, CO , USA .  

  25. Vellinga , M. , Wood , R. A. and Gregory , J. M. 2002 . Processes governing the recovery of a perturbed thermohaline circulation in HadCM3 . J. Climate 15 , 764 – 780 .  

  26. Weber , S. L. , Drijfhout , S. S. , Abe-Ouchi , A. , Crucifix , M. , Eby , M. and co-authors. 2007 . The modern and glacial overturning circulation in the Atlantic ocean in PMIP coupled model simulations . Climate of the Past 3 , 51 - 64 .  

  27. Weijer , W. , De Ruijter , W. P. M. , Dijkstra , H. A. and Van Leeuwen , P. J. 1999 . Impact of interbasin exchange on the Atlantic overturning circulation . J. Phys. Oceanogr 29 , 2266 – 2284 .  

  28. Weijer , W. , De Ruijter , W. and Dijkstra , H. A. 2001 . Stability of the Atlantic overturning circulation: Competition between Bering Strait freshwater flux and Agulhas heat and salt sources . J. Phys. Oceanogr 31 , 2385 – 2402 .  

  29. Weijer , W. , Dijkstra , H. A. , Oksuzoglu , H. , Wubs , F. W. and De Niet , A. C. 2003 . A fully-implicit model of the global ocean circulation . J. Comp. Phys . 192 , 452 – 470 .  

  30. Wood , R. A. , Keen , A. B. , Mitchell , J. F. B. and Gregory , J. M. 1999 . Changing spatial structure of the thermohaline circulation in response to atmospheric CO2 forcing in a climate model . Nature 399 , 572 – 575 .  

comments powered by Disqus