Start Submission Become a Reviewer

Reading: Incremental 4D-Var convergence study

Download

A- A+
Alt. Display

Original Research Papers

Incremental 4D-Var convergence study

Author:

Yannick Trémolet

European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading RG2 9AX, GB
X close

Abstract

Since its operational implementation at European Centre for Medium-Range Weather Forecasts, the incremental fourdimensional variational data assimilation system (4D-Var) has run with two outer loop iterations. It has been shown in the past that more outer loop iterations were leading to the divergence of the algorithm. We re-evaluate here the convergence of 4D-Var at outer loop level with the current system.

Experimental results show that 4D-Var in its current implementation does diverge after four outer loop iterations. Various configurations are tested and show that convergence can be obtained when inner and outer loops are run at the same resolution, or at least with the same time-step. This is explained by the presence of gravity waves which propagate at different speeds in the linear and non-linear models. It is shown that these gravity waves are related to the shape of the leading eigenvector of the Hessian of the 4D-Var cost function which is determined by surface pressure observation and which controls the behaviour of the minimization algorithm. The influence of the choice of the inner loop minimization algorithm and preconditioner is also presented. Finally, some directions for possible future configurations of incremental 4D-Var are given.

How to Cite: Trémolet, Y., 2007. Incremental 4D-Var convergence study. Tellus A: Dynamic Meteorology and Oceanography, 59(5), pp.706–718. DOI: http://doi.org/10.1111/j.1600-0870.2007.00271.x
  Published on 01 Jan 2007
 Accepted on 2 Jul 2007            Submitted on 23 Feb 2007

References

  1. Andersson , E. , Bauer , P. , Beljaars , A. , Chevallier , E , Wilm , E. and co-authors. 2005. Assimilation and modeling of the atmospheric hydrological cycle in the ECMWF forecasting system. Bull. Amer MeteoroL Soc . 86 , 387 - 402 .  

  2. Andersson , E. , Cardinali , C. , Fisher , M. , HOlm , E. , Isaksen , L. and co-authors. 2004. Developments in ECMWF’s 4D-Var System. In ANIS Symposium on Forecasting the Weather and Climate of the Atmosphere and Ocean. Available from the American Meteorological Society, http://ams.confex.com/ams/84Annual/20WAF16NVV/program.htm .  

  3. Andersson , E. , Fisher , M. , Munro , R. and McNally , A. 2000 . Diagnosis of background errors for radiances and other observable quantities in a variational data assimilation scheme, and the explanation of a case of poor convergence . Q. J. R. MeteoroL Soc . 126 , 1455 – 1472 .  

  4. Courtier , P. , Thepaut , J.-N. and Hollingsworth , A. 1994 . A strategy for operational implementation of 4D-Var, using an incremental approach . Q. J. R. MeteoroL Soc . 120 , 1367 – 1387 .  

  5. Fisher , M. 1998 . Minimization algorithms for variational data assimilation. In: Seminar on Recent Developments in Numerical Methods for Atmospheric Modelling , ECMWF, pages 364 - 385 .  

  6. Fisher , M. 2003 . Background error covariance modelling. In Workshop on Recent developments in data assimilation for atmosphere and ocean, ECMWF, pages 45 - 63 .  

  7. Fisher , M. and Courtier , P. 1995 . Estimating the covariance matrices of analysis and forecast error in variational data assimilation. Tech. Memo. 220, ECMWF.  

  8. Gauthier , P. and Thepaut , J.-N. 2001 . Impact of the Digital Filter as a weak constraint in the preoperational 4DVAR assimilation system of Meteo-France. Mon. Wea. Re v . 129 , 2089 – 2102 .  

  9. Gilbert , J.-C. and Lemarechal , C. 1989 . Some numerical experiments with variable storage quasi-Newton algorithms . Math. Program . 45 , 407 – 435 .  

  10. Gratton , S. , Lawless , A. and Nichols , N. 2007 . Approximate gauss-newton methods for nonlinear least squares problems . SIAM J. Opt ., 18 ( 1 ), 106 – 132 .  

  11. Klinker , E. , Rabier , F. , Kelly , G. and Mahfouf , J.-F. 2000 . The ECMWF operational implementation of four dimensional variational assimilation. Part DI: experimental results and diagnostics with operational configuration . Q. J. R. MeteoroL Soc . 126 , 1191 – 1215 .  

  12. Laroche , S. and Gauthier , P. 1998 . A validation of the incremental formulation of 4D variational data assimilation in a nonlinear barotropic flow . Tellus 50A , 557 – 572 .  

  13. Lawless , A. , Gratton , S. and Nichols , N. 2005 . An investigation of incremental 4D-Var using non-tangent linear models . Q. J. R. MeteoroL Soc . 131 , 459 – 476 .  

  14. Mahfouf , J.-F. and Rabier , F. 2000 . The ECMWF operational implementation of four dimensional variational assimilation. Part 11: experimental results with improved physics . Q. J. R. MeteoroL Soc . 126 , 1171 – 1190 .  

  15. Rabier , F. , Järvinen , H. , Klinker , E. , Mahfouf , J.-F. and Simmons , A. 2000 . The ECMWF operational implementation of four dimensional variational assimilation. Part I: experimental results with simplified physics . Q. J. R. MeteoroL Soc . 126 , 1143 – 1170 .  

  16. Trémolet , Y. 2004 . Diagnostics of linear and incremental approximations in 4D-Var . Q. J. R. MeteoroL Soc . 130 , 2233 – 2251 .  

  17. Veersé , F. and Thepaut , J.-N. 1998 . Multiple-truncation incremental approach for four-dimensional variational data assimilation . Q. J. R. MeteoroL Soc . 124 , 1889 – 1908 .  

comments powered by Disqus