Start Submission Become a Reviewer

Reading: Trends in the amplitude of Baltic Sea level annual cycle

Download

A- A+
Alt. Display

Original Research Papers

Trends in the amplitude of Baltic Sea level annual cycle

Authors:

Birgit Hünicke ,

Institute for Coastal Research, GKSS Research Centre, Max-Planck-Str.1, 21502 Geesthacht; International Max Planck Research School on Earth System Modelling, Hamburg, DE
X close

Eduardo Zorita

Abstract

Baltic Sea tide gauge data and climatic data sets are statistically analysed to investigate the centennial trends in the amplitude of the annual cycle of Baltic sea level. In almost all gauge stations analysed, an increase of the amplitude (winter-spring sea level) is detected. These trends are not large compared to the decadal variations of the annual cycle, but they are statistically significant. The magnitude of the trends is almost spatially uniform, with exception of the Skagerrak area. Since interannual and decadal variability of sea level displays a clear spatial pattern, the mechanism responsible for the trends in the annual cycle seem to be not regional, but affect the Baltic Sea basin as a whole.

Several hypotheses are proposed to explain these centennial trends on the winter-minus-spring sea level: wind (through the SLP field), the barometric effect, temperature and precipitation. By elimination of three of the working hypothesis, seasonal Baltic precipitation remains a plausible candidate. For the other three, either the sign or magnitude of the trend makes them unlikely the sole explanation.

How to Cite: Hünicke, B. and Zorita, E., 2008. Trends in the amplitude of Baltic Sea level annual cycle. Tellus A: Dynamic Meteorology and Oceanography, 60(1), pp.154–164. DOI: http://doi.org/10.1111/j.1600-0870.2007.00277.x
  Published on 01 Jan 2008
 Accepted on 23 Aug 2007            Submitted on 9 Jul 2007

References

  1. Bogdanov , V. I. , Medvedev , M.Yu. , Solodov , V. A. , Trapeznikov , Yu. A. , and co-authors . 2000 . Mean monthly series of sea level observations (1777-1993) at the Kronstadt gauge . Reports of the Finnish Geodetic Institute 2000 : 1 , 34 pp .  

  2. Chen , D. and Omstedt , A. 2005 . Climate-induced variability of sea level in Stockholm: influence of air temperature and atmospheric circula-tion . Adv. Atmos. Sci . 22 , 655 – 664 .  

  3. Durbin , J. , and Watson , G. S. 1950 . Testing for serial correlation in least squares regression, I . Biometrika 37 , 409 – 428 .  

  4. Effron , B. , and Tibshirani , R. J. 1993 . An Introduction to the Bootstrap , Chapman & Hall, New York, 1993.  

  5. Ekman , M. 2003 . The world’s longest sea level series and a winter oscil-lation index for Northern Europe 1774-2000 . Small PubL Historical Geophys . 12 , 30 pp .  

  6. Ekman , M. 1999 . Climate changes detected through the worlds longest sea level series . Global Planet Change 21 , 215 – 224 .  

  7. Ekman , M. and Mäkinen J. 1996 . Mean sea-surface topography in the Baltic Sea and its transition area to the North Sea: a geodetic solution and comparison with ocean models . J. Geophys. Res . 101 , 11993 – 11999 .  

  8. Ekman , M. and Stiegebrandt , A. 1990 . Secular changes of the seasonal variations in sea-level and the Pole Tide in the Baltic Sea . J. Geophys. Res . 95 ( C4 ), 5379 – 5383 .  

  9. Giorgi , P. and Bi , X. 2005 . Updated regional precipitation and tem-perature changes for the 21st century from ensembles of AOGCM simulations. Geophys. Res. Lett . 32 , doi: https://doi.org/10.1029/2005GL024288 .  

  10. Hünicke , B. and Zorita , E. 2006 . Influence of temperature and precipita-tion on decadal Baltic Sea level variations in the 20th century . Tellus 58A , 141 – 153 .  

  11. Hulme , M. , Osborn , T. J. and Johns , T. C. 1998 . Precipitation sensi-tivity to global warming: comparison of observations with HadCM2 simulations . Geophys. Res. Lett . 25 , 3379 – 3382 .  

  12. IPCC 2007 . Climate change 2007: the physical science basis . Contri-bution of Working Group I to the Fourth Assessment of the Intergov-ernmental Panel on Climate Change, Cambridge University Press, Cambridge , UK and New York , USA .  

  13. Jevrejeva , S. , Moore , J. C. , Woodworth , P. L. and Grinsted , A. 2005 . In-fluence of large-scale atmospheric circulation on European sea level: results based on the wavelet transform method . Tellus 57A , 183 – 193 .  

  14. Jones , P. D. and Moberg , A. 2003 . Hemispheric and large-scale surface air temperature variations: an extensive revision and an update to 2001 . J. Climate 16 , 206 – 223 .  

  15. Jones , P. D. , Jonsson , T. and Wheeler , D. 1997 . Extension of the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int. J. Climatol . 17 , 1433 - 1450 .  

  16. Kauker , F. and Meier , M. H. B. 2003 . Modeling decadal variability of the Baltic Sea: 1. Reconstructing atmopsheric surface data for the period 1902-1998 . J. geophys. Res . 108 ( C8 ), 3267 .  

  17. Mann , H. B. 1945 . Nonparametric test against trend . Econometrica 13 , 245 – 259 .  

  18. Meier , H. E. M. 2005 . Modelling the age of Baltic sea water masses: quantification and steady state sensitivity experiments . J. Geophys. Res . 110 , CO2006 , doi: https://doi.org/10.1029/2004JC002607 .  

  19. Meier , H. E. M. 2006 . Baltic Sea climate in the late twenty-first century: a dynamical downscaling approach using two global models and two emissions scenarios . Clim. Dyn . 27 , 39 – 68 .  

  20. Meier , H. E. M. and Kauker , E 2003 . Modelling decadal variabil-ity of the Baltic Sea: 2. Role of fresh water inflow and large-scale atmospheric circulation for salinity. J. Geophys. Res . 108 ( C8 ), doi: https://doi.org/10.1029/2003JC001799 .  

  21. Plag , H.-P. and Tsimplis M. N. 1999 . Temporal variability of the seasonal sea-level cycle in the North Sea and Baltic Sea in relation to climate variability. Global and Planet. Change 20 , 173 - 203 .  

  22. Sen , P. K. 1968 . Estimates of the regression coefficients based on the Kendall’s tau . J. Am. Stat. Assoc . 63 , 1379 – 1389 .  

  23. Stephenson , D. , Pavan , V. , Collins , M. , Junge , M. M. , Quadrelli , R. , and co-authors . 2006 . North Atlantic Oscillation response to transient greenhouse gas forcing and the impact of European winter climate: a CMIP2 multimodel assessement . Clim. Dyn . 20 , 381 - 399 .  

  24. Stigebrandt , A. 2001 . A systems analysis of the Baltic Sea. In: Phys-ical Oceanography of the Baltic Sea (eds F. Wulff , L. Rahm and P. Larsson ). Springer Verlag, Berlin, Heidelberg, Germany , 19 - 74 .  

  25. Trenberth , K. E. and Paolino (jr.) , D. A. 1980. The northern hemisphere SLP-dataset: trends, errors and discontinuities . Mon. Wea. Rev . 108 , 855 – 872 .  

  26. Woodworth , P. L. and Player , R. 2003 . The permanent service for mean sea level: an update to the 21st century . J. Coastal Res . 19 , 287 – 295 .  

  27. Yan , Z. , Tsimplis , M. and Woolf , D. 2004 . Analysis of the relationship between the north Atlantic oscillation and sea level changes in the northwest Europe . Int. J. Climatol . 24 , 743 – 758 .  

  28. Zorita , E. and Laine A. 2000 . Dependence of salinity and oxygen concen-trations in the Baltic Sea on the large-scale atmospheric circulation . Clim. Res . 14 , 25 – 41 .  

comments powered by Disqus