Start Submission Become a Reviewer

Reading: An investigation into the application of an ensemble Kalman smoother to high-dimensional geo...

Download

A- A+
Alt. Display

Original Research Papers

An investigation into the application of an ensemble Kalman smoother to high-dimensional geophysical systems

Authors:

Shree P. Khare ,

National Center for Atmospheric Research 1850 Table Mesa Drive, Boulder, CO 80305, US
X close

Jeffrey L. Anderson,

National Center for Atmospheric Research 1850 Table Mesa Drive, Boulder, CO 80305, US
X close

Timothy J. Hoar,

National Center for Atmospheric Research 1850 Table Mesa Drive, Boulder, CO 80305, US
X close

Douglas Nychka

National Center for Atmospheric Research 1850 Table Mesa Drive, Boulder, CO 80305, US
X close

Abstract

We examine the application of ensemble Kalman filter algorithms to the smoothing problem in high-dimensional geophysical prediction systems. The goal of smoothing is to make optimal estimates of the geophysical system state making best use of observations taken before, at, and after the analysis time. We begin by reviewing the underlying probabilistic theory, along with a discussion how to implement a smoother using an ensemble Kalman filter algorithm. The novel contribution of this paper is the investigation of various key issues regarding the application of ensemble Kalman filters to smoothing using a series of Observing System Simulation Experiments in both a Lorenz 1996 model and an Atmospheric General Circulation Model. The results demonstrate the impacts of non-linearities, ensemble size, observational network configuration and covariance localization. The Atmospheric General Circulation model results demonstrate that the ensemble Kalman smoother (EnKS) can be successfully applied to high-dimensional estimation problems and that covariance localization plays a critical role in its success. The results of this paper provide a foundation of understanding which will be useful in future applications of EnKS algorithms.

How to Cite: Khare, S.P., Anderson, J.L., Hoar, T.J. and Nychka, D., 2008. An investigation into the application of an ensemble Kalman smoother to high-dimensional geophysical systems. Tellus A: Dynamic Meteorology and Oceanography, 60(1), pp.97–112. DOI: http://doi.org/10.1111/j.1600-0870.2007.00281.x
  Published on 01 Jan 2008
 Accepted on 18 Sep 2007            Submitted on 10 Dec 2006

References

  1. Anderson , J. L. 2003 . A local least squares framework for ensemble filtering . Mon. Wea. Rev . 131 , 634 – 642 .  

  2. Anderson , J. L. 2007 . Exploring the need for localisation in ensemble data assimilation using a hierarchical ensemble filter . Physica D 230 , 99 – 111 .  

  3. Anderson , J. L. , Wyman , B. , Zhang , S. and Hoar , T. 2005 . Assimilation of surface pressure observations using an ensemble filter in an idealised global atmospheric prediction system. J. Atmos. Sci. 62 , 2925 - 2938.  

  4. Bishop , C. H. , Etherton , B. J. and Majumdar , S. 2001 . Adaptive sampling with the ensemble transform Kalman filter. Part 1: theoretical aspects . Mon. Wea. Rev . 129 , 420 – 436 .  

  5. Bishop , C. H. , Reynolds , C. A. and Tippett , M. K. 2003 . Optimisation of the fixed global observing network in a simple model . J. Atmos. Sci . 60 , 1471 – 1489 .  

  6. Burgers , G. , van Leeuwen , P. J. and Evensen , G. 1998 . Analysis scheme in the ensemble Kalman filter . Mon. Wea. Rev . 126 , 1719 – 1724 .  

  7. Cohn , S. E. 1997 . An introduction to estimation theory . JMeteoro/. Soc. Jpn . 75 , 257 – 288 .  

  8. Cohn , S. E. , Sivakumaran , N. S. and Todling , R. 1994 . A fixed-lag Kalman smoother for retrospective data assimilation . Mon. Wea. Rev . 122 , 2838 – 2867 .  

  9. Daley , R. 1991 . Atmospheric Data Analysis . Vol. 2. Cambridge Univer-sity Press , New York , 457 pp .  

  10. Evensen , G. 1994 . Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statis-tics . J. Geophys. Res . 99 , 10143 – 10162 .  

  11. Evensen , G. and van Leeuwen , P. J. 2000 . An ensemble Kalman smoother for nonlinear dynamics . Mon. Wea. Rev . 128 , 1852 – 1867 .  

  12. Evensen , G. 2003 . The ensemble Kalman filter: theoretical formulation and practical implementation . Ocean Dyn . 53 , 343 – 367 .  

  13. Gaspari , G. and Cohn , S. E. 1999 . Construction of correlation functions in two and three dimensions , J. R. MeteoroL Soc . 125 , 723 – 757 .  

  14. Hamill , T. M. and Snyder , C. 2001 . Using improved background error covariances from an ensemble Kalman filter for adaptive observations . Mon. Wea. Rev . 130 , 1552 – 1572 .  

  15. Held , I. and Suarez , M. J. 1994 . A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models . Bull. Am. Meteorol. Soc . 75 , 1825– 1830 .  

  16. Houtekamer , P. L. and Mitchell , H. L. 1998 . Data assimilation using an ensemble Kalman filter technique . Mon. Wea. Rev . 126 , 796 – 811 .  

  17. Houtekamer , P. L. and Mitchell , H. L. 2005 . Atmospheric data assimi-lation with an ensemble Kalman filter: results with real observations . Mon. Wea. Rev . 133 , 604 – 620 .  

  18. Jazwinski , A. H. 1970 . Stochastic Processes and Filtering Theory . Aca-demic Press , San Diego , 376 pp .  

  19. Kalman , R. E. 1960 . A new approach to linear filtering and prediction problems . Trans. AMSE Ser D. J. Basic. Eng . 82 , 35 – 45 .  

  20. Kalnay , E. , Kanamitsu , M. , Kistler , R. , Collins , W. , Deaven , D. and co-authors , 1996. The NCEP/NCAR reanalysis project. Bull. Am. Mete-oroL Soc . 77 , 437 - 471 .  

  21. Khare , S. P. 2004 . Observing Network Design for Improved Prediction of Geophysical Fluid Flows-Analysis of Ensemble Methods . PhD thesis , Princeton University , 195 pp .  

  22. Khare , S. P. and Anderson , J. L. 2006a . An examination of ensemble filter based adaptive observation methodologies . Tellus 58A , 179 - 195 .  

  23. Khare , S. P. and Anderson , J. L. 2006b . A methodology for fixed obser-vational network design: theory and application to a simulated global prediction system . Tellus 58A , 523 – 537 .  

  24. Lorenz , E. N. and Emanuel , K. A. 1998 . Optimal sites for supplementary weather observations: simulation with a small model , J. Atmos. Sci . 55 , 399 – 414 .  

  25. Lorenz , E. N. 1996 . Predictability: a problem partly solve. Proceedings of the Seminar on Predictability Volume 1, ECMWF, Reading, Berk-shire, UK, pp. 1 - 18 .  

  26. Simmons , A. J. and Burridge , D. M. 1981 . An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates . Mon. Wea. Rev . 109 , 758 – 766 .  

  27. Simmons , A. J. and Gibson , J. K. 2000 . ERA-40 Project report series no. 1. The ERA-40 project plan, ECMWF, Reading, UK.  

  28. Snyder , C. and Zhang , E 2003 . Assimilation of simulated doppler radar observations with an ensemble Kalman filter . Mon. Wea. Rev . 131 , 1663 – 1667 .  

  29. Tippett , M. K. , Anderson , J. L. , Bishop , C. H. , Hamill , T. M. and Whitaker , J. S. 2003 . Ensemble square-root filters. Mon. Wea. Rev . 131 , 1485 - 1490 .  

  30. Whitaker , J. S. and Compo , G. P. 2002 . An ensemble Kalman smoother for reanalysis. Proc. Symp. on Observations, Data Assimilation and Probabilistic Prediction , Orlando, FL , Amer. Meteor. Soc. , 144 - 147 .  

  31. Whitaker , J. S. and Hamill , T. M. 2002 . Ensemble data assimilation without perturbed observations . Mon. Wea. Rev . 130 , 1931 – 1924 .  

comments powered by Disqus