Start Submission Become a Reviewer

Reading: Ice dynamics in the Bothnian Bay inferred from ADCP measurements

Download

A- A+
Alt. Display

Original Research Papers

Ice dynamics in the Bothnian Bay inferred from ADCP measurements

Authors:

Göran Björk ,

Department of Oceanography, Earth Science Center, Göteborg University, Box 460, SE 405 30, Göteborg, SE
X close

Christian Nohr,

Department of Oceanography, Earth Science Center, Göteborg University, Box 460, SE 405 30, Göteborg, SE
X close

Bo G. Gustafsson,

Department of Oceanography, Earth Science Center, Göteborg University, Box 460, SE 405 30, Göteborg, SE
X close

Amund E. B. Lindberg

Umeå University, Umeå Marine Science Centre, SE
X close

Abstract

A bottom mounted ADCP has monitored the ice motion and thickness in Bothnian Bay, Baltic Sea during the entire winter season 2004. The ADCP was deployed at 20 m depth at Falkensgrund well outside the land fast ice zone. The data shows that the ice motion is primarily driven by the wind but with a clear influence of internal ice stresses. The ice stresses become more dominant as the ice grow thicker with increasing number of observations with nearly stationary ice for relatively high wind speeds. A clear dependence of the ice/wind speed ratio to wind shifts is detected with higher ratio in the new wind direction. The effect of strain hardening is also seen in several events as decreasing ice speed, sometimes to zero, in spite of constant wind speed and wind direction. A rough force balance computation gives a compressive ice strength of about 9 × 104 Nm−2, which is much larger than normally used in numerical ice models. The ice thickness data show numerous ice ridges with ice draft well above 1 m passing the instrument. The ridges make up a large portion, 30–50%, of the total ice volume showing that dynamical processes are important for the total ice production in the Bothnian Bay.

How to Cite: Björk, G., Nohr, C., Gustafsson, B.G. and Lindberg, A.E.B., 2008. Ice dynamics in the Bothnian Bay inferred from ADCP measurements. Tellus A: Dynamic Meteorology and Oceanography, 60(1), pp.178–188. DOI: http://doi.org/10.1111/j.1600-0870.2007.00282.x
  Published on 01 Jan 2008
 Accepted on 28 Sep 2007            Submitted on 9 Feb 2007

References

  1. Belliveau , D. J. , Bugden , G. L. , Eid , B. M. and Calnan , C. J. 1990 . Sea ice velocity-measurements by upward-looking doppler current profilers . J. Atmos. Oceanic Technol . 7 ( 4 ), 596 – 602 .  

  2. Granskog , M. , Kartokallio , H. , Kuosa , H , Thomas , D. N. and Vainio , J. 2006 . Sea ice in the Baltic Sea-a review. Estuarine, Coast . Shelf Sc i . 70 , 145 – 160 .  

  3. Haapala , J. and Leppäranta , M. 1996 . Simulating the Baltic Sea ice season with a coupled ice-ocean model . Tellus, Ser A 48A , 622 – 643 .  

  4. IRIS , 2003 . Ice Ridging Information for Decision Making in Ship-ping Operations. EU project homepage: http://www.t1dc.fi/Units/Ship/Research/Iris/Public!  

  5. Joffre , S. M., 1982 . Momentum and heat transfers in the surface layer over a frozen sea . Boundary-Layer Met . 24 ( 2 ), 211 – 229 .  

  6. Jacob , D. and Omstedt , A. (eds.) 2005 . BALTEX PHASE 1: 1993-2002, State of the Art Report. BALTEX Publication No. 31, 181 pages.  

  7. Leppäranta , M. 1981 . On the structure and mechanics of pack ice in the Bothnian Bay . Finnish Mar Res . 248 , 3 – 86 .  

  8. Leppäranta , M. and Omstedt , A. 1990 . Dynamic coupling of sea ice and water for an ice field with free boundaries . Tellus, Ser A 42A , 482 – 495 .  

  9. Leppäranta , M. and Halcala , R. 1992 . The structure and strength of first-year ice ridges in the Baltic Sea . Cold Regions Sci. TechnoL 20 , 295 – 311 .  

  10. Leppäranta , M. 1998 . The dynamics of sea ice. Lecture notes from a summer school in Savonlinna, Finland 6-17 june 1994. In: Physics of Ice-Covered Seas, (ed. Matti Leppäranta ). Helsinki University Press, Helsink i , 305 – 342 .  

  11. Leppäranta , M. , Sun , Y. and Haapala , J. 1998 . Comparison of sea ice velocity fields from ERS-1 SAR and dynamic model . J. Glaciol . 44 , 248 – 262 .  

  12. Leppäranta , M. and Omstedt , A. 1999 . A review of ice time series of the Baltic Sea . Publications Instituti Geographici Universitatis Tartuen-sis , 84 , 7 – 10 .  

  13. Leppäranta , M. 2005 . The Drift of Sea Ice . Springer, Helsink i , 266 p .  

  14. Omstedt , A. , Elken , J. , Lehmann , A. and Piechura , J. 2004. Knowledge of the Baltic Sea physics gained during the BALTEX and related programmes. Prog. Oceanogr 63 ( 1-2 ), 1 - 28 .  

  15. Samuelsson , M. and Stigebrandt , A. 1996 . Main characteristics of the long-term sea level variability in the Baltic Sea . Tellus 48A , 672 – 683 .  

  16. Shcherbina , A. Y. , Rudnick , D. L. and Talley , L. 2005 . Ice-draft profiling from bottom-mounted ADCP data . J. Atmos. Oceanic TechnoL 22 ( 8 ), 1249 – 1266 .  

  17. Thorndike , A. S. and Colony , R. 1982 . Sea ice motion in response to geostrophic wind . J. Geophys. Res . 87 ( C8 ), 5845 – 5852 .  

  18. Thorndike , A. S. , Rothrock , D. A. , Maykut , G. A. and Colony , R. 1975 . The thickness distribution of sea ice . J. Geophys. Res . 80 ( 33 ), 4501 – 4519 .  

  19. Uotila , J. 2001 . Observed and modelled sea-ice drift response to wind forcing in the northern Baltic Sea . Tellus 53A , 112 – 128 .  

  20. Zhang , Z. H. and Leppäranta , M. 1995 . Modeling the influence of ice on sea level variations in the Baltic Sea . Geophysica 31 ( 2 ), 31 – 45 .  

comments powered by Disqus