Start Submission Become a Reviewer

Reading: Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects

Download

A- A+
Alt. Display

Original Research Papers

Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects

Authors:

A. Dabas ,

Météo-France, FR
X close

M. L. Denneulin,

Météo-France, FR
X close

P. Flamant,

Laboratoire de Météorologie Dynamique, FR
X close

C. Loth,

Laboratoire de Météorologie Dynamique, FR
X close

A. Garnier,

Service d’Aéronomie, FR
X close

A. Dolfi-Bouteyre

Office National de Recherches Aéronautiques, FR
X close

Abstract

The molecular channel of the space-based Doppler lidar ADM-Aeolus relies on a double Fabry—Perot (FP) interferometer. The difference in photon numbers transmitted by the two FPs divided by their sum- the so-called Rayleigh response—is a function of the central frequency of the spectrum of the laser light backscattered by the atmosphere, so that a proper inversion enables the measurement of Doppler shifts and line-of-sight wind velocities. In this paper, it is shown that the relation-ship between the Rayleigh response and the Doppler shift does not depend on the sole characteristics of the instrument, but also on the atmospheric pressure and temperature (through the Rayleigh—Brillouin effect), and the likely presence of a narrow-band radiation due to particle scattering. The impact of these on the precision of inverted Doppler shifts (or line-of-sight winds) is assessed showing that a correction is needed. As they are lacking the appropriate precision, climatology profiles of pressure, temperature or aerosols cannot be used as an input. It is proposed to use data predicted by a numerical weather prediction system instead. A possible correction scheme is proposed. Its implication on the quality of retrieved Rayleigh winds is discussed.

How to Cite: Dabas, A., Denneulin, M.L., Flamant, P., Loth, C., Garnier, A. and Dolfi-Bouteyre, A., 2008. Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects. Tellus A: Dynamic Meteorology and Oceanography, 60(2), pp.206–215. DOI: http://doi.org/10.1111/j.1600-0870.2007.00284.x
4
Views
3
Downloads
  Published on 01 Jan 2008
 Accepted on 23 Jul 2007            Submitted on 11 Jan 2007

References

  1. Abreu , V. J. , Barnes , J. E. and Hayes , P. B. 1992 . Observation of winds with an incoherent lidar detector . AppL Opt . 31 , 4509 – 4514 .  

  2. Bhatnagar , P. L. , Gross , E. P. and Krook , M. 1954 . A model for colli-sion processes in Gases. I. Small amplitude processes in charged and neutral one-component system . Phys. Rev . 94 , 511 – 525 .  

  3. Boley , C. D. , Tenti , G. and Desai , R. C. 1972 . Kinetic models and Brillouin scattering in a molecular gas . Can. J. Phys . 2158 – 2173 .  

  4. Chanin , M. L. , Gamier , A. , Hauchecorne , A. and Porteneuve , J. 1989 . A Doppler lidar for measuring winds in the middle atmosphere . Geophys. Res. Lett . 16 , 1273 – 1276 .  

  5. Clark , N. A. 1975 . Inelastic light scattering from density fluctuations in dilute gases. The kinetic-hydrodynamic transition in a monatomic gas . Phys. Rev. A 12 , 232 – 244 .  

  6. Flamant , R , Loth , C. , Dabas , A. , Denneulin , M.-L. , Dolfi-Bouteyre , A. and co-authors. 2005. ILIAD: Impact of Line Shape on Wind Mea-surements and Correction Methods. Final report ESTEC contract 1833404/NUMM. 124 pp .  

  7. Garnier , A. and Chanin , M. L. 1992 . Description of a Doppler Rayleigh lidar for measuring winds in the middle atmosphere . AppL Phys. B 55 , 35 – 40 .  

  8. Killeen , T. L. , Kennnedy , B. C. , Hays , P. B. , Symanow , D. A. and Ceck-owski , D. H. 1983 . Image plane detector for the dynamics explorer Fabry-Perot interferometers . AppL Opt . 22 , 3503 – 3513 .  

  9. McGill , M. J. , Skinner , W. R. and Irgang , T. D. 1997 . Analysis tech-niques for the recovery of winds and bacicscatter coefficients from a multiple-channel incoherent Doppler lidar. AppL Opt . 36 , 1253 - 1268 .  

  10. Pan , X. , Shneider , M. N. and Miles , R. B. 2002a . Coherent Rayleigh-Brillouin scattering in monatomic gases in the kinetic regime. Paper #AIAA-2002-3235, 22nd AIAA Aerodynamic Measure-ment Technology and Ground Testing Conference, St. Louis, MO, June 24 - 26 .  

  11. Pan , X. , Shneider , M. N. and Miles , R. B. 2002b . Coherent Rayleigh-Brillouin scattering. Phys. Rev. Lett . 89 , article #183001.  

  12. Pan , X. G. , Shneider , M. N. and Miles , R. B. 2004 . Coherent Rayleigh-Brillouin scattering in molecular gases. Phys. Rev. A 69 , Article #033814.  

  13. Rye , B. J. 1998 . Molecular backscatter heterodyne lidar: a computational evaluation . AppL Opt . 37 , 6321 – 6328 .  

  14. Souprayen , C. , Gamier , A. , Hertzog , A. , Hauchecorne , A. and Porteneuve , J. 1999a . Rayleigh-Mie Doppler wind lidar for atmo-spheric measurements. I. Instrumental setup, validation, and first cli-matological results . AppL Opt . 38 , 2410 – 2421 .  

  15. Souprayen , C. , Gamier , A. and Hertzog , A. 1999b . Rayleigh-Mie Doppler wind lidar for atmospheric measurements. IL Mie scatter-ing effect, theory, and calibration . AppL Opt . 38 , 2422 – 2431 .  

  16. Tan , D. G. H. , Andersson , E., De Kloe , J. , Marseille , G.-J. , Stoffelen , A. and co-authors . 2007 . The ADM-Aeolus wind retrieval algorithms. Tellus 60A , doi: https://doi.org/10.1111/j.1600-0870.2007.00285.x .  

  17. Tenti , G. , Boley , C. D. and Desai , R. C. 1974 . On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases . Can. J. Phys . 52 , 285 .  

  18. Wegdam , G. H. and Schaink , H. M. 1989 . Light-scattering studies of dynamical processes in disparate mass gas mixtures . Phys. Rev. A 40 , 7301 – 7311 .  

  19. Yip , S. and Nellcin , M. 1964 . Application of kinetic model to time-dependent density correlations in fluids . Phys. Rev . 135 , A1241–A1247 .  

comments powered by Disqus