Start Submission Become a Reviewer

Reading: Combining the mid-latitudinal and equatorial mass/wind balance relationships in global data ...

Download

A- A+
Alt. Display

Original Research Papers

Combining the mid-latitudinal and equatorial mass/wind balance relationships in global data assimilation

Authors:

Heiner Körnich ,

Department of Meteorology, Stockholm University, SE-10691 Stockholm, SE
X close

Erland Källén

Department of Meteorology, Stockholm University, SE-10691 Stockholm, SE
X close

Abstract

Multivariate data assimilation is achieved by introducing mass/wind balance relationships in the background term. Geostrophy is commonly used as such a relationship in mid-latitudes. For tropical latitudes, a newbalance relationship on the basis of equatorial waves has been proposed. In order to combine the equatorial with the mid-latitudinal formulation, a new data assimilation scheme is developed. The balance relationships are formulated in terms of Hough modes. For the minimization of the cost function, a control variable is constructed, where the background error is projected onto an appropriate selection of Hough modes which are weighted with their respective background covariances. The covariance structures of the data assimilation scheme are examined with single observation experiments and the increments are discussed with respect to the balance relationships. Finally, the new proposed assimilation scheme is tested in a simple observing system simulation experiment. The application of an incomplete balance relationship based on geostrophy leads to a misinterpretation of observational data and thus to enhanced analysis errors. Only the combined balance relationship improves the tropical analysis. This improvement is expected to play an important role for the analysis quality, when future wind observations from the Earth Explorer Atmospheric Dynamics Mission are available.

How to Cite: Körnich, H. and Källén, E., 2008. Combining the mid-latitudinal and equatorial mass/wind balance relationships in global data assimilation. Tellus A: Dynamic Meteorology and Oceanography, 60(2), pp.261–272. DOI: http://doi.org/10.1111/j.1600-0870.2007.00286.x
  Published on 01 Jan 2008
 Accepted on 6 Jul 2007            Submitted on 26 Jan 2007

References

  1. Bantzer , C. H. and Wallace , J. M. 1996 . Intraseasonal variability in tropi-cal mean temperature and precipitation and their relation to the tropical 40-50 day oscillation . J. Atmos. Sci . 53 , 3032 – 3045 .  

  2. Becker , E. and Schmitz , G. 2001 . Interaction between extratropical sta-tionary waves and the zonal mean circulation . J. Atmos. Sci . 58 , 462 – 480 .  

  3. Daley , R. 1991 . Atmospheric Data Analysis . Cambridge University Press , Cambridge , UK , 460 pp .  

  4. Derber , J. and Bouttier , F. 1999 . A reformulation of the background error covariance in the ECMWF global data assimilation system . Tellus 51A , 195 – 221 .  

  5. Gilbert , J. C. and Lemarechal , C. 1989 . Some numerical experiments with variable storage quasi-Newton algorithms . Math. Prog. B 25 , 407 – 435 .  

  6. Gill , A. E. 1980 . Some simple solutions for heat-induced tropical circu-lation . Q. J. R. Meteorol. Soc . 106 , 447 – 462 .  

  7. Fisher , M. 2003 . Background error covariance modelling. In: Proceedings of the ECMWF Seminar on Recent Developments in Data Assimilation for Atmosphere and Ocean, ECMWF, 8-12 September 2003, 45 - 63 .  

  8. Kasahara , A. 1976 . Normal modes of ultralong waves in the atmosphere . Mon. Wea. Rev . 104 , 669 – 690 .  

  9. Lindzen , R. S. 1974 . Wave-CISK in the Tropics . J. Atmos. Sci . 31 , 156 – 179 .  

  10. Matsuno , T. 1966 . Quasi-geostrophic motions in the equatorial area . J. Meteor Soc. Japan 44 , 25 – 42 .  

  11. Milliff , R. F. and Madden , R. A. 1996 . The existence and vertical structure of fast, eastward-moving disturbances in the equatorial troposphere . J. Atmos. Sci . 53 , 586 – 597 .  

  12. Parrish , D. F. and Derber , J. C. 1992 . The National Meteorological Cen-ter’s spectral statistical interpolation analysis system . Mon. Wea. Rev . 120 , 1747– 1763 .  

  13. Rossby , C. G. 1937 . On the mutual adjustment of pressure and velocity distributions in certain simple current systems. I. J. Mar Res. 1 , 15 - 28.  

  14. Rossby , C. G. 1938 . On the mutual adjustment of pressure and velocity distributions in certain simple current systems . II. J. Mar. Res . 2 , 239 – 263 .  

  15. Stoffelen , A. , Pailleux , J. , Källen , E. , Vaughan , J. M. , Isaksen , L. , and co-authors . 2005 . The atmospheric dynamic mission for global wind measurements. Bull. Amer Meteor Soc . 86 , 73 - 87 .  

  16. Wheeler , M. and Kiladis , G. N. 1999 . Convectively coupled equato-rial waves: analysis of clouds and temperature in the wavenumber-frequency domain . J. Atmos. Sci . 56 , 374 – 399 .  

  17. Wheeler , M. , Kiladis , G. N. and Webster , P. J. 2000 . Large-scale dynam-ical fields associated with convectively coupled equatorial waves. J. Atmos. Sci . 57 , 613 - 640 .  

  18. Žagar , N. , Gustafsson , N. and Källen , E. 2004 . Variational data assimi-lation in the tropics: the impact of a background error constraint . Q. J. R. MeteoroL Soc . 130 , 103 – 125 .  

  19. Žagar , N. , Andersson , E. and Fisher , M. 2005 . Balanced tropical data assimilation based on a study of equatorial waves in ECMWF short-range forecast errors . Q. J. R. MeteoroL Soc . 131 , 987 – 1011 .  

comments powered by Disqus