Start Submission Become a Reviewer

Reading: ADM-Aeolus retrieval algorithms for aerosol and cloud products

Download

A- A+
Alt. Display

Original Research Papers

ADM-Aeolus retrieval algorithms for aerosol and cloud products

Authors:

Pierre Flamant ,

Laboratoire de Météorologie Dynamique/Institut Pierre Simon Laplace, École Polytechnique, 91128 Palaiseau, FR
X close

Juan Cuesta,

Laboratoire de Météorologie Dynamique/Institut Pierre Simon Laplace, École Polytechnique, 91128 Palaiseau, FR
X close

Marie-Laure Denneulin,

Météo-France, Toulouse, FR
X close

Alain Dabas,

Météo-France, Toulouse, FR
X close

Dorit Huber

Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, DE
X close

Abstract

ADM-Aeolus, the wind Lidar under development at ESA, is a High Spectral Resolution Lidar that additionally provides separated information on particles (Mie channel) and molecules (Rayleigh channel). Lidar signals will be accumulated in vertical range bins in order to reach sufficient signal-to-noise ratio for reliable wind estimates. The vertical range bin integration may vary from 250mnear the surface up to 2 kmin the upper troposphere and lower stratosphere. Significant attenuation in a range bin changes the nature of the retrieval problem. The commonly used Lidar inversion techniques appear to be inadequate to process bin-accumulated signals. This paper presents the ‘L2A processor’, conceived to use ADM-Aeolus signals to provide information on aerosol and cloud layers optical properties. The altitude, geometrical depth, optical depth, backscatter-to-extinction ratio and scattering ratio are to be retrieved. The L2A processor algorithms provide a new formulation to the inverse problem for various filling cases of a range bin and it includes a credibility criterion (CC) in order to select the best filling approximation. The effective vertical resolution can be two to four times better than the ADM-Aeolus range bins. The basic concept, the processing algorithms, numerical examples and sensitivity tests are here presented.

How to Cite: Flamant, P., Cuesta, J., Denneulin, M.-L., Dabas, A. and Huber, D., 2008. ADM-Aeolus retrieval algorithms for aerosol and cloud products. Tellus A: Dynamic Meteorology and Oceanography, 60(2), pp.273–286. DOI: http://doi.org/10.1111/j.1600-0870.2007.00287.x
  Published on 01 Jan 2008
 Accepted on 4 Sep 2007            Submitted on 15 Jan 2007

References

  1. Ackerman , J. 1997 . The extinction-to-backscatter ratio of tropospheric aerosol: a numerical study . J. Atmos. Sci . 15 , 1043 – 1050 .  

  2. Bailey , M. and Hallett , J. 2004 . Growth rates and habits of ice crystals between —20° and —70°C. J. Atmos. Scie .  

  3. Boley , C. D. , Tenti , G. and Desai , R. C. 1972 . Kinetic Models and Brillouin Scattering in a Molecular Gas. Can. J. Phys . 50 , 2158 - 2173 .  

  4. Carier , L. W. G. A. , Cato , K. J. and von , Essen 1967 . The bacicscattering and extinction of visible and infrared radiation by selected major cloud models . Appl. Opt . 6 , 1209 – 1216 .  

  5. Cattrall , C. , Reagan , J. , Thome , K. and Dubovilc , O . 2005 . Variabil-ity of aerosol and spectral lidar and bacicscatter and extinction ratios of key aerosol types derived from selected aerosol robotic network locations. J. Geophys. Res.-Atmos. 110 , D15 , D15511, Paper No. https://doi.org/10.1029/2004JD005124 )  

  6. Chanin , M. L. , Gamier , A. , Hauchecorne , A. and Porteneuve , J. 1989 . A Doppler lidar for measuring winds in the middle atmosphere . Geophys. Res. Lett . 16 , 1273 – 1276 .  

  7. ESA 1999 . The four candidate Earth Explorer core missions—Atmospheric Dynamics Mission. ESA report for mission selection . ESA SP- 1233 ( 4 ), 145 pp .  

  8. Evans , B. T. 1988 . Sensitivity of the backscatter-to-extinction ratio to changes in optical properties: implications for lidar . AppL Opt . 27 , 3299 – 3305 .  

  9. Fernald , F. G. , Herman , B. M. and Reagan , J. A. 1972 . Determination of aerosol height distributions by lidar . J. AppL MeteoroL 11 , 482 – 489 .  

  10. Fernald , F. G. 1984 . Analysis of atmospheric lidar observations — some comments . AppL Opt . 23 , 652 – 653 .  

  11. Flamant , R , Loth , C. , Dabas , A. , Denneulin , M.-L. , Dolfi-Bouteyre , A. and co-authors. 2005. ILIAD: impact of line shape on wind measurements and correction methods. Final report ESTEC contract 1833404/NUMM. 124 p.  

  12. Garnier , A. and Chanin , M. L. 1992 . Description of a Doppler Rayleigh lidar for measuring winds in the middle atmosphere. AppL Phys ., B 55 , 35 – 40 .  

  13. Imalci , M. , Takegoshi , Y. and Kobayashi , T. 2005 . Ultraviolet High-spectral-resolution Lidar with Fabry-Perot filter for accurate mea-surement of extinction and lidar ratio . Jpn. J. Appl. Phys . 44 , 3063 – 3067 .  

  14. Mitrescu , C. 2005 . Lidar model with parameterized multiple scattering for retrieving cloud optical properties . J. Quant. Spectrosc. RadiaL Trans . 94 , 201 – 224 .  

  15. Nicolas , F. , Bissonnette , L. R. and Flamant , P. H. 1997 . Lidar effective multiple-scattering coefficients in cirrus clouds. AppL Opt . 36 , 3458 - 3468 .  

  16. Noël , V. , Ledanois , G. , Chepfer , H. and Flamant , P. H. 2001 Computation of single-scattering matrix for non spherical particles randomly and horizontally oriented in space . AppL Opt . 40 , 4365 – 4375 .  

  17. Pan , X. G. , Shneider , M. N. and Miles , R.B. 2004 . Coherent Rayleigh-Brillouin scattering in molecular gases. Phys. Rev. A 69 , article #033814.  

  18. Platt , C.R.M. 1973 . Lidar and radiometric observations of cirrus clouds , J. Atmos. Sc . 30 , 1191 – 1204 .  

  19. Shipley , S. T. , Tracy , D. H. , Eloranta , E. W. , Trauger , J. T. , Sroga , J. T. and co-authors. 1983 . High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: theory and instrumentation. AppL Opt . 22 , 3716 - 3724 .  

  20. Stoffelen , A. , Pailleux , J. , KäHen , E. , Vaughan , J. M. , Isalcsen , L. and co-authors . 2005 . The atmospheric dynamics mission for global wind measurement. Bull . Amer Meteorol. Soc . 86 , 73 - 87 .  

  21. Tenti , G. , Boley , C. D. and Desai , R. C. 1974 . On the kinetic model description of Rayleigh-Brillouin scattering from Molecular Gases . Canadian. J. Phys . 52 , 285 – 290 .  

  22. Winker , D. M. , Pelon , J. and McCormick , M. P. 2003. The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds. In Lidar Remote Sensing for Industry and Environment Monitoring III. Proc. SPIE Volume 4893 (eds Singh , U. N. , Itabe , T. and Lui , Z. ), pp. 1-11. SPIE, Bellingham, WA .  

comments powered by Disqus