Start Submission Become a Reviewer

Reading: Sensitivity Observing System Experiment (SOSE)—a new effective NWP-based tool in designing t...

Download

A- A+
Alt. Display

Original Research Papers

Sensitivity Observing System Experiment (SOSE)—a new effective NWP-based tool in designing the global observing system

Authors:

Gert-Jan Marseille ,

KNMI, Wilhelminalaan 10, 3732 GK De Bilt, NL
X close

Ad Stoffelen,

KNMI, Wilhelminalaan 10, 3732 GK De Bilt, NL
X close

Jan Barkmeijer

KNMI, Wilhelminalaan 10, 3732 GK De Bilt, NL
X close

Abstract

Lacking an established methodology to test the potential impact of prospective extensions to the global observing system (GOS) in real atmospheric cases we developed such a method, called Sensitivity Observing System Experiment (SOSE). For example, since the GOS is non uniform it is of interest to investigate the benefit of complementary observing systems filling its gaps. In a SOSE adjoint sensitivity structures are used to define a pseudo true atmospheric state for the simulation of the prospective observing system. Next, the synthetic observations are used together with real observations from the existing GOS in a state-of-the-art Numerical Weather Prediction (NWP) model to assess the potential added value of the new observing system. Unlike full observing system simulation experiments (OSSE), SOSE can be applied to real extreme events that were badly forecast operationally and only requires the simulation of the new instrument. As such SOSE is an effective tool, for example, to define observation requirements for extensions to the GOS. These observation requirements may serve as input for the design of an operational network of prospective observing systems. In a companion paper we use SOSE to simulate potential future space borne DopplerWind Lidar (DWL) scenarios and assess their capability to sample meteorologically sensitive areas not well captured by the current GOS, in particular over the Northern Hemisphere oceans.

How to Cite: Marseille, G.-J., Stoffelen, A. and Barkmeijer, J., 2008. Sensitivity Observing System Experiment (SOSE)—a new effective NWP-based tool in designing the global observing system. Tellus A: Dynamic Meteorology and Oceanography, 60(2), pp.216–233. DOI: http://doi.org/10.1111/j.1600-0870.2007.00288.x
  Published on 01 Jan 2008
 Accepted on 15 Oct 2007            Submitted on 15 Jan 2007

References

  1. Barkmeijer , J. , Buizza , R. and Palmer , T. N. 1999 . 3D-Var Hessian singu-lar vectors and their potential use in the ECMWF Ensemble Prediction System . Q. J. R. Meteorol. Soc . 125 , 2333 – 2351 .  

  2. Barkmeijer , J. , Iversen , T. and Palmer , T. N. 2003 . Forcing singular vectors and other sensitive model structures . Q. J. R. Meteorol. Soc . 129 , 2401 – 2423 .  

  3. Bergot , T. , Hello , G. , Joly , A. and Malardel , S. 1999 . Adaptive observa-tions: a feasibility study . Mon. Wea. Rev . 127 , 743 – 765 .  

  4. Caron , J. F. , Yau , M. K. , Laroche , S. and Zwack , P. 2007 . The character-istics of key analysis errors. Part I: dynamical balance and comparison with observations . Mon. Wea. Rev . 135 , 249 – 266 .  

  5. Cress , A. and Wergen , W. 2001 . Impact of profile observations on the German Weather Service’s NWP system . Meteor. Zeitschrift 10 , 91 – 101 .  

  6. Daley , R. 1999 . Atmospheric Data Analysis. Cambridge Atmospheric and Space Science Series, Cambridge University Press, Cambridge, UK. ISBN 0-521-45825-0, 457 p.  

  7. Fisher , M., 2003 . Background error covariance modelling. In: Proceedings of ECMWF Seminar “Recent developments in data assimilation for atmosphere and ocean, 8-12 September 2003”, Reading, UK, 45-64.  

  8. Gelaro , R. , Reynolds , C. A. , Langland , R. H. and Rohaly , G. D. 2000 . A Predictability Study Using Geostationary Satellite Wind Observations during NORPEX. Mon. Weather Rev . 128 , 3789 - 3807 .  

  9. Hello , G. , Lalaurette , F. and Thepaut , J. N. 2000 . Estimation of key analysis errors using the adjoint technique . Q. J. R. Meteorol. Soc . 126 , 621 – 647 .  

  10. Isaksen , L. , Fisher , M. , Andersson , E. and Barkmeijer , J. 2005 . The structure and realism of sensitivity perturbations and their interpre-tation as “Key Analysis Errors” . Q. J. R. Meteorol. Soc . 131 , 3053 – 3078 .  

  11. Kelly , G. 2004 . OSEs of all main data types in the ECMWF operational system. In: Proceedings of the Third WMO Workshop on the Impact of Various Observing Systems on 1VWP, Alpbach, Austria, 63-94.  

  12. Klinker , E. , Rabier , F. and Gelaro , R. 1998 . Estimation of key analysis errors using the adjoint technique . Q. J. R. Meteorol. Soc . 124 , 1909 – 1933 .  

  13. Koch , R. , Ehrendorfer , M. and Weissmann , M. 2006 . Key analysis errors and airborne LIDAR measurements of wind. http://www.pa.op.d1r.de/na-trec/KochEtA12006_poster.pdf  

  14. Le Dimet , F. and Talagrand , O. 1986 . Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus 38A , 97 - 110 .  

  15. Lorene , A. 1986 . Analysis methods for numerical weather prediction . Q. J. R. Meteorol. Soc . 112 , 1177 – 1194 .  

  16. Marseille , G. J. and Stoffelen , A. 2003 . Simulation of wind profiles from a space-borne Doppler wind lidar . Q. J. R. Meteorol. Soc . 129 , 3079 – 3098 .  

  17. Marseille , G. J. , Stoffelen , A. and Barkmeijer , J. 2007 . A cycled sen-sitivity observing system experiment on simulated Doppler wind lidar data during the 1999 Christmas storm “Martin”. Tellus 60 , DOI: https://doi.org/10.1111/j.1600-0870.2007.00290.x .  

  18. Masutani , M. , Lord , S. J. , Woollen , J. S. , Yang , W. , Sun , H. , and co-authors . 2004. Global OSSE at NCEP. In: Proceedings of the Eighth Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface AMS, Seattle, USA  

  19. Palmer , T. N. , Gelaro , R. , Barkmeijer , J. and Buizza , R. 1998 . Singular vectors, metrics, and adaptive observations. J. Atmos. Sci . 55 , 633 - 653 .  

  20. Rabier , F. , Courtier , P. , Herveou , M. , Strauss , B. and Persson , A. 1993 . Sensitivity of forecast error to initial conditions using the adjoint model. ECMWF Technical Memorandum 197 .  

  21. Rabier , F. , Klinker , E. , Courtier , P. and Hollingsworth , A. 1996 . Sensi-tivity of forecast errors to initial conditions . Q. J. R. Meteorol. Soc . 122 , 121 – 150 .  

  22. Rabier , F., Järvinen , H. , Klinker , E. , Mahfouf , J.-F. and Simmons , A. 2000 . The ECMWF operational implementation of four-dimensional variational assimilation. I: experimental results with simplified physics. Q. J. R. Meteorol. Soc . 126 , 1143 - 1170 .  

  23. Shapiro , M. and Thorpe , A. 2004 . THORPEX International Science Plan, vs. 3. WMO/TD-No. 1246, WWRP/I’HORPEX No. 2.  

  24. Stoffelen , A. , Pailleux , J. , Källen , E. , Vaughan , J. M. , Isaksen , L. , and co-authors. 2005. The Atmospheric dynamics mission for global wind measurement. Bull. Am. Meteorol. Soc . 86 , 73 - 87 .  

  25. Stoffelen , A. , Marseille , G. J. , Bouttier , F. , Vasiljevic , D. , de Haan , S. and Cardinali , C. 2006. ADM-Aeolus Doppler wind lidar Observing System Simulation Experiment . Q. J. R. Meteorol. Soc . 132 , 1927– 1947 .  

  26. Tan , D. G. H. , Andersson , E. , Fisher , M. and Isaksen , L . 2007 . Ob-serving system impact assessment using a data assimilation ensemble technique: application to the ADM-Aeolus wind profiling mission. Q. J. R. Meteorol. Soc . 133 , 381 - 390 .  

  27. Trémolet , Y. 2006 . Accounting for an imperfect model in 4D-Var . Q. J. R. Meteorol. Soc . 132 , 2483 – 2504 .  

  28. WMO , 2004 . Current Statement of Guidance Regarding How Well Satel-lite Capabilities Meet WMO User Requirements in Ten Application Areas. WMO satellite reports.  

comments powered by Disqus