Start Submission Become a Reviewer

Reading: A simple and efficient locally mass conserving semi-Lagrangian transport scheme

Download

A- A+
Alt. Display

Original Research Papers

A simple and efficient locally mass conserving semi-Lagrangian transport scheme

Author:

Eigil Kaas

Niels Bohr Institute, University of Copenhagen, DK
X close

Abstract

A new simple and accurate locally mass conserving semi-Lagrangian (LMCSL) scheme has been constructed. Mass conservation is obtained by introducing modified interpolation weights at the upstream departure points. Thereby the total mass given off by a given Eulerian grid point to all the surrounding semi-Lagrangian (SL) departure points is equal to the cell area represented by that grid point. The new scheme is equivalent to the cell-integrated semi-Lagrangian (CISL) transport schemes in the sense that divergence—via the weights—is determined by the trajectories and not by centred differences as in traditional SL-schemes.

The LMCSL scheme has been combined with the semi-implicit scheme in a shallow water model. Thereby a numerically stable and inherently mass conserving scheme permitting long time steps has been set up. Tests in plane horizontal geometry including topography give solutions very similar to those obtained with the traditional semi-implicit SL scheme. The well known mountain wave resonance problem appears to be reduced.

The increase in numerical cost of the new scheme relative to traditional SL models is small, particularly when there are several passive tracers, since the same weights are used for all tracers.

How to Cite: Kaas, E., 2008. A simple and efficient locally mass conserving semi-Lagrangian transport scheme. Tellus A: Dynamic Meteorology and Oceanography, 60(2), pp.305–320. DOI: http://doi.org/10.1111/j.1600-0870.2007.00293.x
  Published on 01 Jan 2008
 Accepted on 5 Nov 2007            Submitted on 7 Aug 2007

References

  1. Arakawa , A. and Lamb , V. 1977 . Computational design and the basic dynamical processes of the UCLA general circulation model . Methods Comput. Phys . 17 , 173 – 265 .  

  2. Bates , J. R. , Moorthi , S. and Higgins , R. W. 1993 . A global multilevel atmospheric model using a vector semi-lagrangian finite-difference scheme. part I: adiabatic formulation . Mon. Wea. Rev . 121 , 244 – 263 .  

  3. Cotter , C. J. , Frank , J. and Reich , S . 2007 . The remapped particle-mesh semi-lagrangian advection scheme. Quart. J. Roy. Meteor Soc . 133 , 251 - 260 .  

  4. Doswell , C. A. 1994 . A kinematic analysis of frontogenesis associated with a nondivergent vortex . J. Atmos. Sci . 41 , 1242 – 1248 .  

  5. Durran , D. R. and Reinecke , P. A. 2004 . Instability in a class of explicit two-time-level semi-lagrangian schemes . Quart. J. Roy. Meteor Soc . 130 , 365 – 369 .  

  6. Hólm , E. 1995 . A fully two-dimensional, nonoscillatory advection scheme for momentum and scalar transport equations . Mon. Wea. Rev . 123 , 536 – 552 .  

  7. Jóckel , P. , von Kuhlman , R. , Lawrence , M. G. , Steil , B. , Brenninkmei-jer , C. A. M. , and co-authors. 2001. On a fundamental problem in implementing flux-form advection schemes for tracer transport in 3-dimensional general circulation and chemistry transport models. Quart. J. Roy. Meteor. Soc . 127 , 1035 - 1052 .  

  8. Kaas , E. , Guldberg , A. and Lopez , P. 1997 . A lagrangian advection scheme using tracer points. In: Numerical Methods in Atmospheric and Oceanic Modelling-The Andre J. Robert Memorial Volume (eds C. Lin , R. Laprise and H. Ritchie ), pp. 171 - 194. CMOS/NRC Re-search Press (Companion volume to Atmosphere-Ocean), Canada .  

  9. Laprise , L. P. R. and Plante , A. 1995 . A class of semi-lagrangian integrated-mass (SLIM) numerical transport algorithm . Mon. Wea. Rev . 123 , 553 – 565 .  

  10. Lauritzen , P. H. 2005 . An Inherently Mass-Conservative Semi-Implicit Semi-Lagrangian Model. PhD Thesis, COGCI, University of Copen-hagen, Niels Bohr Institute, Juliane Manes Vej 30, DK-2100 Copen-hagen Denmark.  

  11. Lauritzen , P. H. , Koos , E. and Machenhauer , B . 2006 . A mass-conservative semi-implicit, semi-lagrangian limited-area shallow wa-ter model on the sphere. Mon. Wea. Rev . 134 , 1196 - 1212 .  

  12. Leonard , B. P. , Lock , A. P. and Macvean , M. K. 1996 . Conservative explicit unrestricted time step multidimensional constancy-preserving advection schemes. Mon. Wea. Rev . 124 , 2588 - 2606 .  

  13. Leslie , M. L. and Purser , R. J. 1995 . Three-dimensional mass-conserving semi-lagrangian scheme employing forward trajectories . Mon. Wea. Rev . 123 , 2551 – 2566 .  

  14. Lin , S.-J. 2004 . A “vertically lagrangian” finite-volume dynamical core for global models . Mon. Wea. Rev . 132 , 2293 – 2307 .  

  15. Lin , S.-J. and Rood , R. B. 1996 . Multidimensional flux-form semi-lagrangian transport schemes . Mon. Wea. Rev . 124 , 2064 – 2070 .  

  16. Lindberg , K. and Alexeev , V. A. 2000 . A study of the spurious orographic resonance in semi-implicit semi-lagrangian models . Mon. Wea. Rev . 128 , 1982 – 1989 .  

  17. Machenhauer , B. and Olk , M. 1997 . The implementation of the semi-implicit scheme in cell-integrated semi-lagrangian models. In: Numerical Methods in Atmospheric and Oceanic Modelling-The Andre J. Robert Memorial Volume, (eds C. Lin , R. Laprise and H. Ritchie ), 103-126. CMOS/NRC Research Press (Companion volume to Atmosphere-Ocean), Canada.  

  18. McGregor , J. L. 1993 . Economical determination of departure points for semi-lagrangian models . Mon. Wea. Rev . 121 , 221 – 230 .  

  19. Nair , R. D. , Cote , J. and Staniforth , A. 1999 . Monotonic cascade inter-polation for semi-lagrangian advection. Quart. J. Roy. Meteor Soc . 125 , 197 - 212 .  

  20. Nair , R. D. and Machenhauer , B. 2002 . The mass-conservative cell-integrated semi-lagrangian advection scheme on the sphere . Mon. Wea. Rev . 130 , 649 – 667 .  

  21. Nair , R. D. , Scroggs , J. S. and Semazzi , E H. M. 2002. Efficient conser-vative global transport schemes for climate and atmospheric chemistry models. Mon. Wea. Rev . 130 , 2059 - 2073 .  

  22. Ranèié , M. 1995 . An efficient, conservative, monotone remapping for semi-lagrangian transport algorithms . Mon. Wea. Rev . 123 , 1213 – 1217 .  

  23. Rasch , P. J. and Williamson , D. L. 1990 . Computational aspects of mois-ture transport in global models of the atmosphere . Quart. J. Roy. Me-teor Soc . 116 , 1071 – 1090 .  

  24. Reich , S. 2007 . An explicit and conservative remapping strategy for semi-lagrangian advection . Atm. Sci. Let . 8 , 58 – 68 .  

  25. Rivest , C. , Staniforth , A. and Robert , A. 1994 . Spurious resonant re-sponse of semi-lagrangian discretizations to orographic forcing: Di-agnosis and solution . Mon. Wea. Rev . 122 , 366 – 376 .  

  26. Robert , A. 1981 . A stable numerical integration scheme for the primitive meteorological equations . Atmos.-Ocean 19 , 35 – 46 .  

  27. Robert , A. 1982 . A semi-lagrangian and semi-implicit numerical inte-gration scheme for the primitive meteorological equations . J. Meteor Soc. Japan 60 , 319 – 325 .  

  28. Robert , A. , Henderson , J. and Turnbull , C. 1972 . An implicit time inte-gration scheme for baroclinic models of the atmosphere . Mon. Wea. Rev . 100 , 329 – 335 .  

  29. Staniforth , A. and Cote , J. 1991 . Semi-lagrangian integration schemes for atmospheric models - a review . Mon. Wea. Rev . 119 , 2206 – 2223 .  

  30. Temperton , C. and Staniforth , A. 1987 . An efficient two-time-level semi-lagrangian semi-implicit integration scheme . Quart. J. Roy. Meteor Soc . 113 , 1025 – 1039 .  

  31. Xiao , F. , Yabe , T. , Peng , X. and Kobayashi , H. 2002 . Conservative and oscillation-less atmospheric transport schemes based on rational func-tions . J. Geophys. Res . 107 ( D22 ), 4609 .  

  32. Zalezak , S. T. 1979 . Fully multidimensional flux-corrected transport al-gorithms for fluid . J. Comput. Phys . 31 , 335 – 362 .  

  33. Zerroukat , M. , Wood , N. and Staniforth , A. 2002 . SLICE: A semi-lagrangian inherently conserving and efficient scheme for transport problems . Quart. J. Roy. Meteor Soc . 128 , 801 – 820 .  

  34. Zerroukat , M. , Wood , N. and Staniforth , A. 2005 . A monotonic and positive definite filter for a semi-lagrangian inherently conserving and efficient (SLICE) scheme . Quart. J. Roy. Meteor. Soc . 131 , 2923 – 2936 .  

  35. Zerroukat , M. , Wood , N. and Staniforth , A. 2006 . The parabolic spline method (PSM) for conservative transport problems . Int. J. Numer Meth. Fluid 11 , 1297 – 1318 .  

  36. Zerroukat , M. , Wood , N. and Staniforth , A. 2007 . Application of the parabolic spline method (PSM) to a multi-dimensional conservative semi-lagrangian transport scheme (SLICE) . J. Comput. Phys . 225 ( 1 ) 935 – 948 .  

comments powered by Disqus