Start Submission Become a Reviewer

Reading: A study of ensemble size and shallow water dynamics with the Maximum Likelihood Ensemble Filter

Download

A- A+
Alt. Display

Original Research Papers

A study of ensemble size and shallow water dynamics with the Maximum Likelihood Ensemble Filter

Authors:

S. J. Fletcher ,

Cooperative Institute for Research in the Atmosphere, Colorado State University, 1375 Campus Delivery, Fort Collins, CO 80523-1375, US
X close

M. Zupanski

Cooperative Institute for Research in the Atmosphere, Colorado State University, 1375 Campus Delivery, Fort Collins, CO 80523-1375, US
X close

Abstract

In this paper we perform a study using the Maximum Likelihood Ensemble Filter (MLEF), developed at the Cooperative Institute for Research in the Atmosphere (CIRA), Colorado State University (CSU) and Florida State University (FSU), with CSU’s two-dimensional shallow water equations model on the sphere. The aim of this study is to find the optimal number of ensemble members, with respect to the root mean square (rms) error of the three state variables in the shallow water equations model, such that the rms error is a minimum. After ascertaining this number, we vary the size of the observations sets for three different Rossby—Haurwitz waves in the shallow water equations model. These waves generate different types of dynamics from fast, shallow motions to fast, tall waves with vortices, to a flow similar to geostrophic balance. We show that, for faster flows, we require less ensemble members than for slow balanced flows. We also present an explanation for this behaviour in the form of hybrid Lyapunov-bred vectors.

How to Cite: Fletcher, S.J. and Zupanski, M., 2008. A study of ensemble size and shallow water dynamics with the Maximum Likelihood Ensemble Filter. Tellus A: Dynamic Meteorology and Oceanography, 60(2), pp.348–360. DOI: http://doi.org/10.1111/j.1600-0870.2007.00294.x
  Published on 01 Jan 2008
 Accepted on 9 Nov 2007            Submitted on 26 Mar 2007

References

  1. Bishop , C. H. , Etherton , B. J. and Majumdar , S. J. 2001 . Adaptive sam-pling with the Ensemble Transform Kalman Filter. Part I: theoretical aspects . Mon. Wea. Rev . 129 , 420 – 436 .  

  2. Daley , R. 1996 . Atmospheric Data Analysis. In: Cambridge Atmospheric and Space Science Series , (eds J. Houghton , M. J. Rycroft and A. J. Dessler ), Cambridge University Press , Cambridge, UK. , 457 pp .  

  3. Evensen , G. 2003 . The Ensemble Kalman Filter: theoretical formulation and practical implementation . Ocean Dyn . 53 , 343 – 367 .  

  4. Fletcher , S. J. 2004 . Higher Order Balance Conditions using Hamilto-nian Dynamics for Numerical Weather Prediction . PhD Thesis , Uni-versity of Reading , U.K .  

  5. Fletcher , S. J. and Zupanski , M. 2006a . A data assimilation method for log-normally distributed observational errors . Quart. J. Roy. Meteor Soc . 132 , 2505 – 2519 .  

  6. Fletcher , S. J. and Zupanski , M. 2006b . A hybrid normal and lognormal distribution for data assimilation . Atmos. Sci. Lett . 7 , 43 – 46 .  

  7. Gaspari , G. and Cohn , S. E. 1999 . Construction of correlation func-tions in two and three dimensions . Quart. J. Roy. Meteor. Soc . 125 , 723 – 757 .  

  8. Golub , G. H. and Van Loan , C. E 1996 . Matrix Computations 3rd Edition . The Johns Hopkins University Press , London, UK ., 694 pp .  

  9. Hamill , T. M. and Synder , C. 2000 . A hybrid ensemble Kalman filter-3D variational analysis scheme . Mon. Wea. Rev . 128 , 2905 – 2919 .  

  10. Heikes , R. and Randall , D. A. 1995a . Numerical Integration Of The Shallow Water Equations On A Twisted Icosahedral Grid. Part I: basic design and results of tests . Mon. Wea. Rev . 123 , 1862 – 1880 .  

  11. Heikes , R. and Randall , D. A. 1995b . Numerical integration of the shal-low water equations on a twisted icosahedral grid. Part II: a detailed description of the grid and an analysis of numerical accuracy . Mon. Wea. Rev . 123 , 1881 – 1887 .  

  12. Holton , J. R. 1992 . An Introduction to Dynamic Meteorology , Academic Press , San Diego, USA. , 511 pp .  

  13. Hoskins , B. J. 1973 . Stability of the Rossby-Haurwitz wave . Quart. J. Roy. Meteor Soc . 99 , 723 – 745 .  

  14. Houtekamer , P. L. and Mitchell , H. L. 2001 . A sequential ensemble Kalman filter for atmospheric data assimilation . Mon. Wea. Rev . 129 , 123 – 137 .  

  15. Jazwinski , A. H. 1970 . Stochastic Processes and Filtering Theory , Academic Press , New York, USA ., 376 pp .  

  16. Kalnay , E. 2003 . Atmospheric Modeling, Data Assimilation and Pre-dictability, Cambridge University Press, Cambridge, UK., 341 pp .  

  17. Kalnay , E. , Corazza , M. and Cai , M. 2002 . Are bred vectors the same as Lyapunov vectors?. In: Proceedings of the Atmospheric Model-ing, Data Assimilation and Predictability, American Meteorological Society, Boston, MA, USA, 173-177  

  18. Lorene , A. C. 1986 . Analysis methods for numerical weather prediction . Q. J. Roy. Meteor Soc 112 , 1177 – 1194 .  

  19. Lorene , A. C. , Ballard , S. P. , Bell , R. S. , Ingleby , N. B. , Andrews , P. L. F. and co-authors . 2000. The Met. Office global three-dimensional variational data assimilation scheme. Quart. J. Roy. Meteor Soc . 126 , 2991 - 3012 .  

  20. Lorenz , E. N. 1996 . Predictability-a problem partly solved . ECMWF Proc. Seminar on Predictability, Reading, UK . 1 – 18 .  

  21. Méaud , R. , Cohn , S. E. , Chang , L.-P. , and Lyster , P. M. 2000 . Assim-ilation of stratospheric chemical tracer observations using a Kalman filter. Part I: formulation . Mon. Wea. Rev . 128 , 2654 – 2671 .  

  22. Parrish , D. F. and Derber , J. C. 1992 . The National Meteorological Center’s spectral statistical-interpolation analysis system . Mon. Wea. Rev . 120 , 1747 – 1763 .  

  23. Pikovsky , A. and Politi , A. 1998 . Dynamic localization of Lyapunov vectors in spacetime chaos . Nonlinearity 11 , 1049 – 1062 .  

  24. Rabier , F. , Jarvinen , H. , Klinker , E. , Mahfouf , J.-F. and Simmons , A. 2000 . The ECMWF implementation of four dimensional variational assimilation. Part I: experimental results with simplified physics . Quart. J. Roy. Meteor Soc . 126A , 1143 – 1170 .  

  25. Rawlins , F. , Ballard , S. P. , Bovis , K. J. , Clayton , A. M. , Li , D. and co-authors. 2007. The Met Office global four-dimensional variational data assimilation scheme. Quart. J. Roy. Meteor Soc 133 , 347 - 362 .  

  26. Reichle , R. H. , McLaughlin , D. B. and Entelchabi , D. 2002 . Hydrologic data assimilation with Kalman filter . Mon. Wea. Rev . 130 , 103 – 114 .  

  27. Ringler , T. D. and Randall , D. A. 2002 . A potential enstrophy and en-ergy conserving numerical scheme for solutions of the shallow water equations on a geodesic grid . Mon. Wea. Rev . 130 , 1397 – 1410 .  

  28. Sharma , S. 1996 . Applied Multivariate Techniques John Wileys and Sons, Inc. , New York, USA , 493 pp .  

  29. Strang , G. 1980 . Linear Algebra and its Applications 2nd Edition. Aca-demic Press , New York , USA , 414 pp .  

  30. Tippett , M. , Anderson , J. L. , Bishop , C. H. , Hamill , T. M. and Whitaker , J. S. 2003 . Ensemble square root filters . Mon. Wea. Rev . 131 , 1485 – 1490 .  

  31. Toth , Z. and Kalnay , E. 1993 . Ensemble forecasting at NMC: the gener-ation of perturbations . Bull. Amer Meteor. Soc . 74 , 2317 – 2330 .  

  32. Toth , Z. and Kalnay , E. 1997 . Ensemble forecasting at NCEP: the breed-ing method . Mon. Wea. Rev . 125 , 3297 – 3318 .  

  33. Uzunoglu , B. , Fletcher , S. J. , Zupanski , M. and Navon , I. M. 2007 . Adaptive ensemble reduction and inflation. Quart. J. Roy. Meteor Soc . 133 , 1281 - 1294 .  

  34. Williamson , D. L. , Drake , J. B. , Hack , J. J. , Jakob , R. and Swartrauber , P. N. 1992 . A standard test set for numerical approximations to the shallow water equations in spherical geometry . J. Comp. Phys . 102 , 211 – 224 .  

  35. Wlasak , M. A. 2002 . The Examination of Balanced and Unbalanced Flow using Potential Vorticity in Atmospheric Modelling . PhD Thesis , University of Reading , U.K .  

  36. Wlasak , M. A. , Nichols , N. K. and Roulstone , I. 2006 . Use of potential voracity for incremental data assimilation . Quart. J. Roy. Meteor. Soc . 132 , 2867 – 2886 .  

  37. Zupanski , D. and Zupanski , M. 2006 . Model error estimation employing ensemble data assimilation approach . Mon. Wea. Rev . 134 , 1337 – 1354 .  

  38. Zupanski , M., 2005 . Maximum Likelihood Ensemble Filter. Part I: the oretical Aspects . Mon. Wea. Rev . 133 , 1710 – 1726 .  

  39. Zupanski , M. , Fletcher , S. J. , Navon , I. M. , Uzunoglu , B. , Heikes , R. P. and co-authors . 2006. A method for initiation of ensemble data assimilation. Tellus 58A , 159 - 170 .  

  40. Zupanski , M. , Zupanski , D. , Vulcicevic , T. , Eis , K. and Vonder Haar , T. 2005 . CIRA/CSU Four-dimensional variational data assimilation scheme. Mon. Wea. Rev . 133 , 829 - 843 .  

comments powered by Disqus