Start Submission Become a Reviewer

Reading: ‘Explosive’ meridional migration of cyclones and anticyclones

Download

A- A+
Alt. Display

Original Research Papers

‘Explosive’ meridional migration of cyclones and anticyclones

Authors:

Doron Nof ,

Department of Oceanography and Geophysical Fluid Dynamics Institute, Florida State University (FSU), Tallahassee, FL 32306, US
X close

Stephen Van Gorder

Department of Oceanography, Florida State University (FSU), Tallahassee, FL 32306, US
X close

Abstract

We examine the very rapid meridional migration of barotropic eddies and show that the main balance of forces is between the meridional β-induced force and the opposing form-drag generated by the flow surrounding the rapidly moving eddy. The solution is constructed by assuming that, as the flow around a solid cylinder, the flow surrounding the eddy detaches from the eddy downstream.

We find the migration speed to be (3πβVm/5)1/2rm, where Vm is the maximum orbital eddy speed and rm is the radius where the maximum speed occurs. It is typically an order of magnitude faster than the classical westward speed induced by the baroclinic component (βrm2). The above formula gives values that are within 30–50% of the speeds measured in both our own numerical experiments, numerical experiments conducted by others, as well laboratory experiments (conducted by others).

We suggest that it is the barotropic component that very rapidly (10 km d−1) pulls young Agulhas rings towards the equator. Poleward propagating cyclones are not very common but, during POLYMODE, an extremely rapidly propagating cyclone was observed in the North Atlantic. It is speculated here that its rapid propagation was also due to a barotropic component.

How to Cite: Nof, D. and Van Gorder, S., 2008. ‘Explosive’ meridional migration of cyclones and anticyclones. Tellus A: Dynamic Meteorology and Oceanography, 60(2), pp.372–383. DOI: http://doi.org/10.1111/j.1600-0870.2007.00297.x
1
Views
  Published on 01 Jan 2008
 Accepted on 21 Nov 2007            Submitted on 22 May 2007

References

  1. Acheson , D. J. 1990 . Elementary Fluid Dynamics . Clarendon Press , Oxford . pp. 397 .  

  2. Arhan , M. , Mercier , H. and Lutjeharms , J. R. E. 1999 . The disparate evo-lution of three Agulhas rings in the South Atlantic Ocean . J. Geophys. Res . 104 ( C9 ), 20987 – 21005 .  

  3. Boebel , O. , Rossby , T. , Lutjeharms , J. , Zenk , W. and Barron , C. 2003 . Path and variability of the Agulhas Return Current. Deep-Sea Res II 50 , 35 - 56 .  

  4. Byrne , D. A. , Gordon , A. L. and Haxby , W. F. 1995 . Agulhus eddies: a synoptic view using Geosat ERNI data . J. Phys. Oceanogr 25 , 902 – 917 .  

  5. Cherubin , L. M. , Morel , Y. and Chassignet , E. P. 2006 . Loop Current ring shedding: the formation of cyclones and the effect of topography . J. Phys. Oceanogr 36 , 569 – 591 .  

  6. Clement , A. C. and Gordon , A. L. 1995 . Absolute velocity field of Ag-ulhas eddies and the Benguela Current . J. Geophys. Res . 100 , 22591 – 22601 .  

  7. DeMaria , M. 1985 . Tropical cyclone motion in a nondivergent barotropic model . Mon. Wea. Rev . 113 , 1199 – 1210 .  

  8. Dewar , W. K. and Gailliard , C. 1994 . The dynamics of barotropically dominated rings . J. Phys. Oceanogr 24 , 5 – 29 .  

  9. Dewar , W. K. and Morris , M. Y. 2000 . On the propagation of baroclinic waves in the general circulation . J. Phys. Oceanogr 30 , 2637 – 2649 .  

  10. Drijfhout , S. S. 2003 . Why anticyclones can split . J. Phys. Oceanogr 33 , 8 , 1579 – 1591 .  

  11. Firings , E. and Beardsley , R. C. 1978 . The behavior of a barotropic eddy on a beta-plane . J. Phys. Oceanogr 6 , 57 – 65 .  

  12. Flierl , G. R. 1984 . Rossby wave radiation from a strongly nonlinear warm eddy . J. Phys. Oceanogr . 14 , 47 – 58 .  

  13. Flierl , G. R. 1987 . Isolated Eddy Models in Geophysics . Annu. Rev. Fluid Mech . 19 , 493 – 530 .  

  14. Flór , J. B. and Eames , I. 2002 . Dynamics of monopolar vortices on a topographic beta-plane . J. Fluid Mech . 456 , 353 – 376 .  

  15. Hogan , P. J. and Hulburt , H. E. 2000 . Impact of upper ocean-topographical coupling and isopycnal outcropping in Japan/East Sea Models with 1/8° to 1/64° resolution . J. Phys. Oceanogr . 30 , 2535 – 2561 .  

  16. Ivanov , A. F. and Pramonov , A. N. 1980 . In Sinopticheskie vilchri v okeane (Sypnotic Eddies in the Ocean), Naukova Dumlca , Kie v , 107 – 114 .  

  17. Jacobs , G. A. , Hogan , P. J. and Whitmer , K. R. 1999 . Effects of eddy variability on the circulation of the Japan/East sea . J. Oceanogr . 55 , 247 – 256 .  

  18. Kamenkovich , V. M. , Koschlyakov , V. N. and Monin , A. S. 1986 . Synoptic Eddies in the Ocean , Reidel , Dordrecht , Holland , 433 .  

  19. Kamenkovich , V. M. , Leonov , Y. R , Nechaev , D. A. , Byrne , D. A. and Gordon , A. L. 1996 . On the influence of bottom topography on the Agulhas eddy . J. Phys. Oceanogr 26 , 6 , 892 – 912 .  

  20. Killworth , P. D. and Blundell , J. R. 2004 . The dispersion relation for planetary waves in the presence of mean flow and topography: IL Two-dimensional examples and global results . J. Phys. Oceanogr 35 , 2110 – 2133 .  

  21. Korotaev , G. K. 1997 . Radiating vortices in geophysical fluid dynamics . Surv. Geophys . 18 , 567 – 619 .  

  22. McCartney , M. S. and Woodgate-Jones , M. E. 1991 . A deep-reaching anticyclonic eddy in the subtropical gyre of the eastern South Atlantic. Deep-sea Res . 38 , Supplement 1, S411-S443.  

  23. Mied , R. P. and Liendeman , G. J. 1979 . The propagation and evolution of cyclonic Gulf Stream rings . J. Phys. Oceanogr 9 , 1183 – 1206 .  

  24. Nof , D. 1983 . On the migration of isolated eddies with application to Gulf Stream rings . J. Mar Res . 41 , 399 – 425 .  

  25. Nof , D. 1985 . Joint vortices, eastward propagating eddies and migratory Taylor columns . J. Phys. Oceanogr 15 , 1114 – 1137 .  

  26. Nof , R. and Simon , L. 1987 . Laboratory experiments on the merging of anticyclonic eddies . J. Phys. Oceanogr 17 , 343 – 357 .  

  27. Olson , D. B. and Evans , R. J. 1986 . Rings of the Agulhas . Deep-Sea Res . 33 , 27 – 42 .  

  28. Paldor , N. , Rubin , S. and Mariano , A. J. 2007 . A consistent theory for linear waves of the shallow water equations on a rotating plane in mid-latitudes . J. Phys. Oceanogr 37 ( 1 ), 115 – 128 .  

  29. Pichevin , T. , Nof , D. and Lutjeharms , J. 1999 . Why are there Agulhas Rings? . J Phys. Oceanogr 29 , 693 – 707 .  

  30. Reznik , G. M. , Grimshaw , R. and Benilov , E. S. 2000 . On the long-term evolution of an intense localized divergent vortex on the beta-plane . J. Fluid Mech . 422 , 249 – 280 .  

  31. Robinson , A. R. 1983 . Eddies in Marine Science . Springer-Verlag , Berlin Heidelbeg , 609 .  

  32. Rossby , C. G. 1948 . On displacements and intensity changes of atmo-spheric vortices . J. Mar. Res . 7 , 175 – 187 .  

  33. Schmid , C. , Boebel , O. , Zenk , W. , Lutjeharms , J. R. E. , Garzoli , S. L. , Richardson , P. L. and Barron , C. 2003. Early evolution of an Agulhas Ring. Deep-Sea Res . 50 ( 1 ), 141 - 166 .  

  34. Simmons , H. and Nof , D. 2002 . The squeezing of eddies through gaps . J. Phys. Oceanogr . 32 , 314 – 335 .  

  35. Smith , R. B. 1993 . A Hurricane Beta-Drift Law . J. Atmos. Sci . 50 , 3213 – 3215 .  

  36. Schouten , M. W. , De Ruijter , W. P. M. , van Leeuwen , P. J. and Lut-jeharms , J. R. E. 2000 . Translation, decay and splitting of Agulhas rings in the south-east Atlantic ocean . J. Geophys. Res . 105 , 21 913 – 21925 .  

  37. Van Aken , H. M. , van Velthoven , A. K. , Veth , C. , De Ruijter , W. P. M. , Van Leeuwen and co-authors. 2003. Observations of a young Agulhas righ, Astrid, during MARE in March 2000. Deep-Sea Res. 1150 , 167 - 195 .  

  38. Witter , D. L. and Gordon , A. L. 1999 . Interannual variability of South Atlantic circulation from four years of TOPEX/POSEIDON satellite altimeter observations . J. Geophys. Res . 104 , 20927-20 948 .  

comments powered by Disqus