Start Submission Become a Reviewer

Reading: A deterministic formulation of the ensemble Kalman filter: an alternative to ensemble square...

Download

A- A+
Alt. Display

Original Research Papers

A deterministic formulation of the ensemble Kalman filter: an alternative to ensemble square root filters

Authors:

Pavel Sakov ,

CSIRO Marine and Atmospheric Research and Wealth from Oceans Flagship Program, GPO 1538, Hobart, Tasmania 7001, AU
X close

Peter R. Oke

CSIRO Marine and Atmospheric Research and Wealth from Oceans Flagship Program, GPO 1538, Hobart, Tasmania 7001, AU
X close

Abstract

The use of perturbed observations in the traditional ensemble Kalman filter (EnKF) results in a suboptimal filter behaviour, particularly for small ensembles. In this work, we propose a simple modification to the traditional EnKF that results in matching the analysed error covariance given by Kalman filter in cases when the correction is small; without perturbed observations. The proposed filter is based on the recognition that in the case of small corrections to the forecast the traditional EnKF without perturbed observations reduces the forecast error covariance by an amount that is nearly twice as large as that is needed to match Kalman filter. The analysis scheme works as follows: update the ensemble mean and the ensemble anomalies separately; update the mean using the standard analysis equation; update the anomalies with the same equation but half the Kalman gain. The proposed filter is shown to be a linear approximation to the ensemble square root filter (ESRF). Because of its deterministic character and its similarity to the traditional EnKF we call it the ‘deterministic EnKF’, or the DEnKF. A number of numerical experiments to compare the performance of the DEnKF with both the EnKF and an ESRF using three small models are conducted. We show that the DEnKF performs almost as well as the ESRF and is a significant improvement over the EnKF. Therefore, the DEnKF combines the numerical effectiveness, simplicity and versatility of the EnKF with the performance of the ESRFs. Importantly, the DEnKF readily permits the use of the traditional Schur product-based localization schemes.

How to Cite: Sakov, P. and Oke, P.R., 2008. A deterministic formulation of the ensemble Kalman filter: an alternative to ensemble square root filters. Tellus A: Dynamic Meteorology and Oceanography, 60(2), pp.361–371. DOI: http://doi.org/10.1111/j.1600-0870.2007.00299.x
23
Views
7
Downloads
  Published on 01 Jan 2008
 Accepted on 26 Nov 2007            Submitted on 5 May 2007

References

  1. Anderson , J. L. 2001 . An ensemble adjustment Kalman filter for data assimilation . Mon. Wea. Rev . 129 , 2884 – 2903 .  

  2. Bierman , G. J. 1977 . Factorization Methods for Discrete Sequential Es-timation . Academic Press , New York , 68 – 112 .  

  3. Bishop , C. , Etherton , B. and Majumdar , S. J. 2001 . Adaptive sampling with the ensemble transform Kalman filter. Part I: theoretical aspects . Mon. Wea. Rev . 129 , 420 – 436 .  

  4. Burgers , G. , van Leeuwen , P. J. and Evensen , G. 1998 . Analysis scheme in the ensemble Kalman filter . Mon. Wea. Rev . 126 , 1719 – 1724 .  

  5. Evensen , G. 1994 . Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte-Carlo methods to forecast error statis-tics. J. Geophys. Res . 99 , 10143 - 10162 .  

  6. Evensen , G. 2003 . The ensemble Kalman filter: theoretical formulation and practical implementation . Ocean Dyn . 53 , 343 – 367 .  

  7. Evensen , G. 2004 . Sampling strategies and square root analysis schemes for the EnKF . Ocean Dyn . 54 , 539 – 560 .  

  8. Hamill , T. and Whitaker , J. 2001 . Distance-dependent filtering of back-ground error covariance estimates in an ensemble Kalman filter . Mon. Wea. Rev . 129 , 2776 – 2790 .  

  9. Houtekamer , P. L. and Mitchell , H. L. 1998 . Data assimilation using an ensemble Kalman filter technique . Mon. Wea. Rev . 126 , 796 – 811 .  

  10. Houtekamer , P. L. and Mitchell , H. L. 2001 . A sequential ensemble Kalman filter for atmospheric data assimilation . Mon. Wea. Rev . 129 , 123 – 137 .  

  11. Jelloul , M. B. and Thierry , H. 2003 . Basin-mode interactions and selec-tion by the mean flow in a reduced-gravity quasigeostrophic model . J. Phys. Oceanogr 33 , 2320 – 2332 .  

  12. Julier , S. J. and Uhlmann , J. K. 1997 . A new extension of the Kalman filter to nonlinear systems. In: The 11th Int . Symp. on Aerospace/Defence Sensing, Simulation and Controls, Vol . 3068 . 182 – 193 .  

  13. Lawson , W. G. and Hansen , J. A. 2004 . Implications of stochas-tic and deterministic filters as ensemble-based data assimilation methods in varying regimes of error growth . Mon. Wea. Rev . 132 , 1966 – 1981 .  

  14. Lorenz , E. N. and Emanuel , K. A. 1998 . Optimal sites for supplementary weather observations: simulation with a small model . J. Atmos. Sci . 55 , 399 – 414 .  

  15. Oke , P. R. , Schiller , A. , Griffin , D. A. and Brassington , G. B. 2002 . Ensemble data assimilation for an eddy-resolving ocean model of the Australian region. Q. J. R. Meteorol. Soc . 131 , 3301 - 3311 .  

  16. Oke , P. R. , Sakov , P. and Corney , S. P. 2006 . Impacts of localization in the EnKF and EnOI: experiments with a small model. Ocean Dyn . 57 , 32 - 45 .  

  17. Ott , E. , Hunt , B. R. , Szunyogh , I. , Zimin , A. V. , Kostelich , E., J. , and co-authors 2004 . A local ensemble Kalman filter for atmospheric data assimilation. Tellus 56A , 415 - 428 .  

  18. Pham , D. T. , Verron , J. and Roubaud , M. C. 1998 . A singular evolutive extended Kalman filter for data assimilation in oceanography . J. Mar SysL 16 , 323 – 340 .  

  19. Sakov , P. and Oke , P. R. 2008 . Implications of the form of the ensemble transformation in the ensemble square root filters . Mon. Wea. Rev ., in press .  

  20. Tippett , M. K. , Anderson , J. L. , Bishop , C. H. , Hamill , T. M. and Whitaker , J. S. 2003 . Ensemble square root filters. Mon. Wea. Rev . 131 , 1485 - 1490 .  

  21. Wang , X. , Bishop , C. H. and Julier , S. J. 2004 . Which is better, an ensemble of positive-negative pairs or a centered spherical simplex ensemble? Mon. Wea. Rev . 132 , 1590 – 1605 .  

  22. Whitaker , J. S. and Hamill , T. M. 2002 . Ensemble data as-similation without perturbed observations . Mon. Wea. Rev . 130 , 1913 – 1924 .  

comments powered by Disqus