Start Submission Become a Reviewer

Reading: Clustering of cyclones in the ARPEGE general circulation model

Download

A- A+
Alt. Display

Original Research Papers

Clustering of cyclones in the ARPEGE general circulation model

Authors:

Nils Gunnar Kvamstø ,

Geophysical Institute, University of Bergen, Allegaten 70, N-5007; Bjerknes Centre for Climate Reasearch, University of Bergen, Allegaten 70, N-5007, NO
X close

Yongjia Song,

Bjerknes Centre for Climate Reasearch, University of Bergen, Allegaten 70, N-5007, NO
X close

Ivar Ambjørn Seierstad,

Geophysical Institute, University of Bergen, Allegaten 70, N-5007, NO
X close

Asgeir Sorteberg,

Bjerknes Centre for Climate Reasearch, University of Bergen, Allegaten 70, N-5007, NO
X close

David B. Stephenson

Geophysical Institute, University of Bergen, Allegaten 70, N-5007, NO; School of Engineering, Computer Science and Mathematics, University of Exeter, Harrison Building Room 334, North Park Road, Exeter EX4 4QF, GB
X close

Abstract

Baroclinic waves give major contributions to the climatology and variability of key climate variables in mid- and highlatitudes. Animportant aspect of cyclone variability is the seriality (succession of cyclone occurrence). Serial cyclones are clustered in time and are associated with large economic losses in Europe. Cyclone variability and seriality are intimately linked to the low frequency variability. To have a realistic representation of high and mid-latitude regional climate in general circulation models (GCM), it is of vital importance that the described phenomena are realistically represented. In the present paper we evaluate the ability of the atmospheric GCM ARPEGE to represent various storm track parameters, both with respect to climatology and variability. Cyclone tracks are identified for the Northern Hemisphere during 55 extended winters (1950/51–2004/05) using the NCEP reanalyses by means of an objective tracking method. A corresponding cyclone track data set is derived from a simulation with ARPEGE, forced with observed monthly SSTs from 1950 to 2004. The comparison of the two data sets shows that ARPEGE reproduces the main features of the observed cyclone track fields. The mid-latitude corridors of cyclones and cyclone variability are well reproduced. The model, however, underestimates the mean number of cyclone occurrence and its variance. In the eastern North Atlantic and Nordic Seas the model simulates 70 and 90% of the observed mean cyclone occurrence and its variance, respectively. ARPEGE also substantially underestimates the clustering of cyclones in the eastern North Atlantic (jet exit region). In addition, the model also fails to simulate the relationship between clustering and low-frequency flow patterns at the exit of the North Atlantic storm track.

How to Cite: Kvamstø, N.G., Song, Y., Seierstad, I.A., Sorteberg, A. and Stephenson, D.B., 2008. Clustering of cyclones in the ARPEGE general circulation model. Tellus A: Dynamic Meteorology and Oceanography, 60(3), pp.547–556. DOI: http://doi.org/10.1111/j.1600-0870.2007.00307.x
  Published on 01 Jan 2008
 Accepted on 27 Dec 2007            Submitted on 30 Mar 2007

References

  1. Anderson , D. , Hodges , K. I. and Hoskins , B. J. 2003 . Sensitivity of feature-based analysis methods of storm tracks to the form of back-ground field removal . Mon. Wea. Rev . 131 , 565 – 573 .  

  2. Blackmon , M. L. 1976 . A climatological spectral study of the 500-mb geopotential height of the Northern Hemisphere . J. Atmos. Sci . 33 , 1607 – 1623 .  

  3. Bjerknes , V. 1910 . Synoptical representation of atmospheric motions . Quart. J. Roy. Meteor Soc . 36 , 167 – 286 .  

  4. Bossouet , C. , Deque , M. and Cariolle , D. 1998 . Impact of a simple parameterization of convective gravity-wave drag in a stratosphere-troposphere general circulation model and its sensitivity to vertical resolution . Ann. Geophys.-Atmos. Hydrospher Space Sci . 16 ( 2 ), 238 – 249 .  

  5. Branstator , G. 1995 . Organization of storm track anomalies by recurring low-frequency circulation anomalies . J. Atmos. Sci . 52 ( 2 ), 207 – 226 .  

  6. Browning , K. A. 1990 . Organization of clouds and precipitation in extra-tropical cyclones . Extratropical Cyclones: The Erik H. Palmén Memo-rial Volume (eds C . Newton and E. Holopainen , Amer. Meteor. Soc ., 129 – 153 .  

  7. Browning , K. A. 1999 . Mesoscale aspects of extratropical cyclones: an observational perspective . The Life Cycles of Extratropical Cyclones (eds M. A. Shapiro and S. Gronhs ), Amer. Meteor. Soc ., 265 – 283 .  

  8. Browning , K. A. , Hardman , M. E. , Harrold , T. W. and Pardoe , C. W. 1973 . Structure of rainbands within a mid-latitude depression . Quart. J. Roy. Meteor Soc . 99 , 215 – 231 .  

  9. Carlson , T. N. 1980 . Airflow through midlatitude cyclones and the comma cloud pattern . Mon. Wea. Rev . 108 , 1498 – 1509 .  

  10. Carlson , T. N. 1998 . Mid-Latitude Weather Systems . Amer. Meteor. Soc. , 507 pp .  

  11. Déqué , M. , Dreveton , C. , Braun , A. and Cariolle , D. 1994 . The ARPEGE/IFS atmosphere model- a contribution to the French Com-munity Climate Modeling . Clim. Dyn . 10 , 249 – 266 .  

  12. Déqué , M. , Marquet , P. and Jones , R. G. 1998 . Simulation of climate change over Europe using a global variable resolution general circu-lation model . Clim. Dyn . 14 , 173 – 189 .  

  13. Doblas-Reyes , F. J. , Deque , M. , Valero , F. and Stephenson , D. B. 1998 . North Atlantic wintertime intraseasonal variability and its sensitivity to GCM horizontal resolution. Tellus 50A , 573 - 595 .  

  14. Douville , H. , Royer , J. F. and Mahfouf , J. E 1995 . A new snow param-eterization for the Meteo-France climate model. Part II: validation in a 3-D GCM experiment . Clim. Dyn . 12 ( 1 ), 37 – 52 .  

  15. Eckhardt , S. , Stohl , A. , Wernli , H. , James , R , Forster , C. and co-authors. 2004. A 15-year climatology of warm conveyor belts. J. Clim . 17 , 218 - 237 .  

  16. Harrold , T. W. 1973 . Mechanisms influencing the distribution of precip-itation within baroclinic disturbances . Quart. J. Roy. Meteor Soc . 99 , 232 – 251 .  

  17. Hartmann , D. 1994 . Global Physical Climatology, Vol. 56, International Geophysics Series , Academic Press , London .  

  18. Hodges , K. I. 1994 . A general method for tracking analysis and its application to meteorological data . Mon. Wea. Rev . 122 , 2573 – 2586 .  

  19. Hodges H. 1995 . Feature tracking on the unit sphere . Mon. Wea. Rev . 123 , 3458 – 3465 .  

  20. Hodges 1996 . Spherical nonparametric estimators applied to the UGAMP model integration for AMIP . Mon. Wea. Rev . 124 , 2914 – 2932 .  

  21. Hodges 1999 . Adaptive constrains for feature tracking . Mon. Wea. Rev . 127 , 1362 – 1373 .  

  22. Hodges , Hoskins, B. J. , Boyle , J. and Thorncroft , C . 2003 . A comparison of recent re-analysis datasets using objective feature tracking: storm tracks and tropical easterly waves. Mon. Wea. Rev . 131 , 2012 - 2037 .  

  23. Hortal , M. 1998 . Aspects of the numerics of the ECMWF model. ECMWF Seminar Proceedings: Recent Developments in Numerical Methods for Atmospheric Modelling, 7-11 September 1998, pp 127-143, ECMWF, Shinfield Park, Reading, Berkshire, UK.  

  24. Hoskins , B. J. 1983 . Modelling of transient eddies and their feedback on the mean flow . Large-Scale Dynamical Processes in the Atmosphere (eds B. J. Hoskins and R. P. Pearce ), Academic Press , 169 – 199 .  

  25. Hoskins , B. J. and Hodges , K. I. 2002 . New Perspectives on the Northern Hemisphere Winter Storm-Tracks , J. Atmos. Sci . 59 , 1041 – 1061 .  

  26. Hoskins , B. J. and Valdes , P. J. 1990 . On the Existence of Storm-Tracks . J. Atmos. Sci . 47 , 1854– 1864 .  

  27. Hurrell , J. W. 1995 . Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation . Science 269 , 676 – 679 .  

  28. Kalnay , E. , Kanamitsu , M. , Kistler , R. , Collins , W. , Deaven , D. , and co-authors. 1996 . The NCEP/NCAR 40-year reanalysis project. Bull. Amer Meteorol. Soc . 77 , 437 - 471 .  

  29. Kistler , R. , Kalney , E. , Collins , W. , Saha , S. , White , G. , and co-authors. 2001. The NCEPNCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull. Am. Meteorol. Soc . 82 , 247 - 267 .  

  30. Lau , N.-C. 1988 . Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern . J. Atmos. Sci . 45 , 2718 – 2743 .  

  31. Lopez , R , Schmith , T. and Koos , E. 2000 . Sensitivity of the Northern Hemisphere circulation to North Atlantic SSTs in the ARPEGE cli-mate AGCM . Clim. Dyn . 16 , 535 – 547 .  

  32. Lott , F. and Miller , M. J. 1997 . A new subgrid-scale orographic drag parametrization: its formulation and testing. Quart. J. Roy. Met. Soc . 123 Part A(537) , 101 - 127 .  

  33. Luksch , U. , Raible , C. C. , Blender , R. and Fraedrich , K. 2005 . Decadal cyclone variability in the North Atlantic . Meteoro/ogische Zeitschrift 14/6 , 747 – 753 .  

  34. Mailier , P. J. , Stephenson , D. B. , Ferro , C. A. T. and Hodges , K. I. 2006 . Serial clustering of extratropical cyclones, Mon. Wea. Rev . 134 , 2224 - 2240 .  

  35. Morcrette , J.-J. 1991 . Radiation and cloud radiative properties in the European Centre for Medium Range Forecasts forecasting sys-tem . J. Geophys. Res . 96 ( D5 ), 9121 – 9132 .  

  36. Peixoto , J. P. and Oort , A. H. 1992 . Physics of Climate . American Institute of Physics, 520 pp .  

  37. Raible , C. C. , Della-Marta , R , Schwierz , C. , Wernli , H. , Blender , R. 2008 . Northern Hemisphere extratropical cyclones: a comparison of detection and tracking methods and different reanalyses . Mon. Wea. Rev ., in press .  

  38. Raible , C. C. , Luksch , U. , Fraedrich , K. and Voss , R. 2001 . North Atlantic decadal regimes in a coupled GCM simulation , Clim. Dyn . 18 , 321 – 330 .  

  39. Reynolds , R. W. and Smith , T. M. 1994 . Improved global sea surface temperature analyses using optimum interpolation . J. Clim . 7 , 929 – 948 .  

  40. Rogers , J. C. 1997 . North Atlantic storm track variability and its as-sociation to the North Atlantic oscillation and climate variability of Northern Europe . J. Clim . 10 , 1635 – 1646 .  

  41. Salari , I. and Sethi , K. 1990 . Feature point correspondence in the presence of occlusion . IEEE T Pattern Anal . 12 ( 1 ), 87 – 91  

  42. Simmons , A. J. and Burridge , D. M. 1981 . An energy and angular mo-mentum conserving vertical finite-difference scheme and hybrid ver-tical coordinate . Mon. Wea. Rev . 109 , 758 – 766 .  

  43. Sorteberg , A. , Kvamsto , N. G. and Byrkjedal , O . 2004 . Wintertime Nordic Sea cyclone variability and its impact on oceanic volume transports into the Nordic Seas . The Nordic Seas: An Integrated Perspective, Geophysical Monograph 158 , 137 - 156 .  

  44. Thompson , D. W. J. and Wallace , J. M. 1998 . The Arctic Oscillation signature in the wintertime geopotential height and temperature fields . Geophys. Res. Lett . 25 , 1297 – 1300 .  

  45. Zolina , O. and Gulev , S. K. 2002 . Improving the accuracy of map-ping cyclone numbers and frequencies. Mon. Wea. Rev . 130 , 748 - 759 .  

comments powered by Disqus