Start Submission Become a Reviewer

Reading: Aerosol-cloud-climate interactions in the climate model CAM-Oslo

Download

A- A+
Alt. Display

Original Research Papers

Aerosol-cloud-climate interactions in the climate model CAM-Oslo

Authors:

Alf Kirkevåg ,

Department of Geosciences, University of Oslo, P.O.Box 1022 Blindern, 0315 Oslo; Norwegian Meteorological Institute, P.O.Box 43 Blindern, 0313 Oslo, NO
X close

Trond Iversen,

Department of Geosciences, University of Oslo, P.O.Box 1022 Blindern, 0315 Oslo; Norwegian Meteorological Institute, P.O.Box 43 Blindern, 0313 Oslo, NO
X close

Øyvind Seland,

Department of Geosciences, University of Oslo, P.O.Box 1022 Blindern, 0315 Oslo; Norwegian Meteorological Institute, P.O.Box 43 Blindern, 0313 Oslo, NO
X close

Jens Boldingh Debernard,

Norwegian Meteorological Institute, P.O.Box 43 Blindern, 0313 Oslo, NO
X close

Trude Storelvmo,

Department of Geosciences, University of Oslo, P.O.Box 1022 Blindern, 0315 Oslo, NO
X close

Jón Egill Kristjánsson

Department of Geosciences, University of Oslo, P.O.Box 1022 Blindern, 0315 Oslo, NO
X close

Abstract

A new aerosol module is integrated on-line in the atmospheric GCM CAM-Oslo coupled to a slab ocean for equilibrium climate response studies. The response to an anthropogenic change in aerosols since pre-industrial times is compared with that of a future 63% increased CO2 level. The aerosol module calculates concentrations of sea-salt, mineral dust, sulphate, black carbon (BC) and particulate organic matter (POM). Look-up tables, constructed from first principles, are used to obtain optical parameters and cloud droplet numbers (CDNC) for any given aerosol composition. Anthropogenic aerosols thus produce a global near-surface cooling of 1.94Kand a 5.5% precipitation decrease, including amplifications by positive cloud feedbacks. In comparison, the CO2 increase gives a warming of 1.98 K and a 3.8% precipitation increase, causing slightly reduced sulphate, BC, POM and sea-salt burdens. A minor increase in mineral dust is ascribed to reduced subtropical precipitation downwind of Sahara over the Atlantic Ocean. The modelled indirect effects are probably overestimated, mainly due to neglected natural aerosol components and the diagnostic scheme for CDNC. Adding 15cm−3 to CDNC everywhere reduces the indirect forcing from −2.34 to −1.36 Wm−2, whilst solving a prognostic equation for CDNC reduces it from −2.34 to −1.44 Wm−2.

How to Cite: Kirkevåg, A., Iversen, T., Seland, Ø., Debernard, J.B., Storelvmo, T. and Kristjánsson, J.E., 2008. Aerosol-cloud-climate interactions in the climate model CAM-Oslo. Tellus A: Dynamic Meteorology and Oceanography, 60(3), pp.492–512. DOI: http://doi.org/10.1111/j.1600-0870.2007.00313.x
1
Views
  Published on 01 Jan 2008
 Accepted on 8 Jan 2007            Submitted on 2 May 2007

References

  1. Abdul-Razzak , H. and Ghan , S. J., 2000. A parameterization of aerosol activation. Part 2: Multiple aerosol types . J. Geophys. Res . 105 ( D ), 6837-6844 .  

  2. Albrecht , B. A. 1989 . Aerosols, cloud microphysics and fractional cloudiness . Science 245 , 1227 – 1230 .  

  3. Andreae , M. O. , Jones , C. D. and Cox , P. M. 2005 . Strong present-day aerosol cooling implies a hot future. Nature 435 , 1187 - 1190 .  

  4. Boer , G. J. and Yu , B., 2003 . Climate sensitivity and response. Climate Dynamics 20 , 415 – 429 , DOI https://doi.org/10.1007/s00382-002-0283-3 .  

  5. Boville , B. A. , Rasch , P. J. , Hack , J. J. and McCaa , J. R. 2006 . Rep-resentation of clouds and precipitation prcosesses in the Commu-nity Atmosphere Model Version 3 (CAM3) . J. Climate 19 , 2184 – 2198 .  

  6. Briegleb , B. P. , Bitz , C. M. , Hunke , E. C. , Lipscomb , W. H. , Holland , M. M. and co-authors. 2004. Scientific description of the sea ice component in the Community Climate System Model, Version Three. Tech. Rep. NCAR/TN-463±STR, National Center for Atmospheric Research, Boulder, CO, 78 pp .  

  7. Cakmur , R. V. , Miller , R. L. , Perlwitz , J. , Geogdzhayev , I. V. , Ginoux , P. and co-authors. 2006. Constraining the magnitude of the global dust cycle by minimizing the difference between a model and observations . J. Geophys. Res . 111 , D06207, doi: https://doi.org/10.1029/2005JDO05791 .  

  8. Collins , W. D. , Rasch , P. J. , Boville , B. A. , Hack , J. J. , McCaa , J. R. and co-authors. 2004. Description of the NCAR Community Atmosphere Model (CAM3). Tech. Rep. NCAR/TN-464±STR, National Center for Atmospheric Research, Boulder, CO, 226 pp .  

  9. Collins , W. D. , Rasch , P. J. , Boville , B. A. , Hack , J. J. , McCaa , J. R. and co-authors. 2006a. The Formulation and Atmospheric Simulation of the Community Atmospheric Model Version 3 (CAM3) . J. Climate 19 , 2144 - 2161 .  

  10. Collins , W. D. , Bitz , C. M. , Blackmon , M. L. , Bonan , G. B. , Bretherton , C. S. and co-authors. 2006b. The Community Climate System Model Version 3 (CCSM3) . J. Climate 19 , 2122 - 2143 .  

  11. Dentener , E , Kinne , S. , Bond , T. , Boucher , O. , Cofala , J. and co-authors . 2006. Emissions of primary aerosols and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom. Atm. Chem. Physics 6 , 4321 - 4344 .  

  12. Feichter , J. , Roeckner , E. , Lohmann , U. and Liepert , B. 2004 . Nonlinear aspects of the climate response to greenhouse gas and aerosol forcing . J. Climate 17 , 2384 – 2398 .  

  13. Fetterer , E and Knowles , K. 2002. updated 2006. Sea Ice Index. Boulder, CO: National Snow and Ice Data Center. Digital media ( http : //nsidc.org/data/seaice_index/) .  

  14. Forster , P. , Ramaswamy , V. , Artaxo , P. , Bemtsen , T. , Betts , R. and co-authors. 2007. Changes in Atmospheric Constituents and in Radiative Forcing. In: Climate Change 2007: The Physical Science Basis. Con-tribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Eds Solomon , S. , Qin , D. , Manning , M. , Chen , Z. , Marquis , M. , Averyt , K. B. , Tignor , M. and Miller , H. L. ). Cambridge University Press , Cambridge, United Kingdom and New York, NY, USA.  

  15. Ghan , S. J. , Leung , L. R. , Easter , R. C. and Abdul-Razzak , H. 1997 . Prediction of cloud droplet number in a general circulation model. J. Geophys. Res . 102 , 21 , 777 – 21 , 794 .  

  16. Ghan , S. J. , Guzman , G. and Abdul-Razzak , H. , 1998. Competition be-tween sea salt and sulfate particles as cloud condensation nuclei. J. Atmos. Sci . 55 , 3340 - 3347 .  

  17. Hack , J. J. , Caron , J. , Yeager , S. G. , Pleson , K. , Holland , M. and co-authors. 2006 . Simulation of the Global Hydrological Cycle in the CCSM Community Atmosphere Model Version 3 (CAM3): Mean features . J. Climate 19 , 2199 - 2221 .  

  18. Harrison , E. E , Minnis , P. , Barkstrom , B. R. , Ramanathan , V. , Cess , R. D. and co-authors . 1990 . Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment. J. Geophys. Res . 95 , 18687 - 18703 .  

  19. Haugen , J. E. and Iversen , T. 2008 . Response in extremes of daily precipitation and wind from a downscaled multi-model ensem-ble of anthropogenic global climate change scenarios. Tellus 60A , DOI: https://doi.org/10.1111/j.1600-0870.2008.00315.x .  

  20. IPCC , 2001 . Climate Change 2001: The Scientific Basis. Contribution of Working Group Ito the Third Assessment Report of the Intergov-ernmental Panel on Climate Change (Eds Houghton , J. T. , Ding , Y. , Griggs , D. J. , Noguer , M. , van der Linden , P. J. , Dai , X. , Maskell , K. and Johnson , C. A. ). Cambridge University Press , 881 pp .  

  21. IPCC , 2007 . Climate Change 2007: The Physical Science Basis. Sum-mary for Policymakers. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. WMO, Geneva, Switzerland, 18 pp .  

  22. Iversen , T., Kristjánsson , J. E. , Kirkevag , A. and Seland , O. 2005. Cal-culated feedback effects of climate change caused by anthropogenic aerosols . RegClim General Technical Report No . 8 , 111 - 120 .  

  23. Jaenicke , R., 2005 . Abundance of cellular material and proteins in the atmosphere . Science 308 , 73 .  

  24. Kiehl , J. T. and Trenberth , K. E. 1997 . Earth’s Annual Global Mean Energy Budget. Bull. Am. MeteoroL Soc . 78 ( 2 ), 197 - 208 .  

  25. Kiehl , J. T. , Schields , C. A. , Hack , J. J. and Collins , W. D. 2006 . The cli-mate sensitivity of the Community Climate System Model: CCSM3. J. Climate 19 , 2584 - 2596 .  

  26. Kinne , S. , Schulz , M. , Textor , C. , Guibert , S. , Balkanski , Y. and co-authors. 2006 . An AeroCom initial assessment — optical properties in aerosol component modules of global models . Atm. Chem. Phys . 6 , 1815– 1834 .  

  27. Kirkevåg , A. and Iversen , T. 2002 . Global direct radiative forcing by process-parameterized aerosol optical properties . J. Geophys. Res . 107 ( 020 ), 4433 , doi: https://doi.org/10.1029/2001JDO00886 .  

  28. Kirkevåg , A. , Iversen , T. , Seland , O. and Kristjánsson , J. E. 2005. Revised schemes for aerosol optical parameters and cloud condensation nuclei in CCM-Oslo. Institute Report Series, Department of Geosciences, University of Oslo, 29 pp, ISBN 82-91885-31-1, ISSN 1501-6854-128.  

  29. Kirkevåg , A. , Iversen , T., Kristjánsson , J. E. , Seland , O. and De-bemard , J. B. 2008 . On the additivity of climate response to an-thropogenic aerosols and CO2, and the enhancement of future global warming by carbonaceous aerosols. Tellus 60A , DOI: https://doi.org/10.1111/j.1600-0870.2008.00308.x .  

  30. Kristjánsson , J. E. 2002. Studies of the aerosol indirect effect from sul-fate and black carbon aerosols. J. Geophys. Res . 107 ( 015 ), 4246 , doi: https://doi.org/10.1029/2001JD000887 .  

  31. Kristjánsson , J. E. , Iversen , T. , Kirkevag , A. , Seland , O. and Debemard , J. 2005 . Response of the climate system to aerosol direct and indi-rect forcing: Role of cloud feedbacks. J. Geophys. Res . 110 , D24206, doi: https://doi.org/10.1029/2005JD006299 .  

  32. Leck , C. and Bigg , E. K., 2007 . Comparison of sources and nature of the tropical aerosol with the summer high Arctic aerosol. Tellus B , DOI: https://doi.org/10.1111/j.1600-0889.2007.00315.x .  

  33. Legates , D. R. and Willmott , C. J. 1990 . Mean seasonal and spatial variability in global surface air temperature. Theor AppL Climatol . 41 , 11 - 21 .  

  34. Levitus , S., 1982 . Climatological Atlas of the World Ocean . NOAA Pro-fessional Paper 13 , National Oceanic and Atmospheric Administra-tion , 173 pp .  

  35. Lohmann , U. and Lesins , G. , 2002. Stronger Constraints on the Anthro-pogenic Indirect Aerosol Effect. Science 298 , 1012 - 1015 .  

  36. Lohmann , U. and Feichter , J. 2005. Global indirect aerosol effects: a review. Atmos. Chem. Phys . 5 , 715 - 737 .  

  37. Lohmann , U. , Feichter , J. , Penner , J. E. and Leaitch , W. R. 2002 . Indirect effect of sulfate and carbonaceous aerosols: a mechanistic treatment. J. Geophys. Res . 105 , 12193 - 12206 .  

  38. Lohmann , U. , Quaas , J. , Kinne , S. and Feichter , J . 2007 . Different Approaches for Constraining Global Climate Models of the An-thropogenic Indirect Aerosol Effect. Bull. Amer Meteorol. Soc ., doi: https://doi.org/10.1175/BAMS-88-2-243 .  

  39. Murphy , J. M. , Sexton , D. , Barnett , D. , Jones , G. , Webb , M. and co-authors. 2004 . Quantification of modelling uncertainties in a large ensemble of climate change simulations . Nature 430 , 768 - 772 .  

  40. Penner , J. E. , Quaas , J. , Storelvmo , T. , Takemura , T. , Boucher , O. and co-authors. 2006 . Model intercomparison of indirect aerosol effects . Atm. Chem. Phys . 6 , 3391 - 340 .  

  41. Pruppacher , H. R. and Klett , J. D., 1997 . Microphysics of clouds and precipitation . Kluwer Academic Publishers , Dordrecht , 954 pp .  

  42. Quaas , J. , Boucher , O. and Lohmann , U . 2006 . Constraining the total aerosol indirect effect in the LMDZ and ECHAM4 GCMs using MODIS satellite data. Atmos. Chem. Phys . 6 , 947 - 955 .  

  43. Ramaswamy , V. (co-ordinating lead author), 2001. Radiative forcing of climate change. Chapter 6 in the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press , pp. 349 - 416 .  

  44. Rasch , P. J. and Kristjánsson , J. E. 1998 . A comparison of the CCM3 model climate using diagnosed and predicted condensate parameteri-zations . J. Climate 11 , 1587 – 1614 .  

  45. Rossow , W. B. and Duefias , E. N. 2004 . The International Satellite Cloud Climatology Project (ISCCP) Web Site: An online resource for re-search . Bull. Am. MeteoroL Soc . 85 , 167 – 172 .  

  46. Rossow , W. B. and Schiffer , R. A. 1999 . Advances in understanding clouds from ISCCP . Bull. Am. MeteoroL Soc . 80 , 2261 – 2287 .  

  47. Rotstayn , L. D. , Ryan , B. E and Penner , J. E. 2000 . Precipitation changes in a GCM resulting from the indirect effects of anthropogenic aerosols . Geophys. Res. Lett . 27 , 3045 – 3048 .  

  48. Rotstayn , L. D. and Lohmann , U. 2002 . Tropical rainfall trends and the indirect aerosol effect . J. Climate 15 , 2103 – 2116 .  

  49. Schulz , M. , Textor , C. , Kinne , S. , Balkanski , Y. , Bauer , S. and co-authors. 2006. Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations . Atm. Chem. Phys . 6 , 5225 - 5246 .  

  50. Seland , E. , Iversen , T. , Kirkevag , A. and Storelvmo , T. 2008 . Aerosol-climate interactions in the CAM-Oslo atmospheric GCM and in-vestigation of associated basic shortcomings. Tellus 60A , DOI: https://doi.org/10.1111/j.1600-0870.2008.00318.x .  

  51. Slingo , A., 1989 . A GCM parameterization for the shortwave radiative properties of water clouds . J. Atmos. Sci . 46 , 1419 – 1427 .  

  52. Stainforth , D. A. , Aina , T. , Christensen , T. , Collins , M. , Faull , N. and co-authors. 2005. Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 433 , 403 - 406 .  

  53. Stier , P. , Feichter , J. , Kinne , S. , Kloster , S. , Vignati , E. and co-authors. 2005 . The aerosol-climate model ECHAM5-HAM . Atmos. Chem. Phys . 5 , 1125 - 1156 .  

  54. Stier , P. , Feichter , J. , Roeckner , E. , Kloster , S. and Esch , M. , 2006 . The evolution of the global aerosol system in a transient climate simulation from 1860 to 2100 . Atmos. Chem. Phys . 6 , 3059 – 3076  

  55. Storelvmo , T., Kristjánsson , J. E. , Myhre , G. , Johnsrud , M. and Stordal , E 2006a. Combined observational and modeling based study of the aerosol indirect effect (COMBINE). Atmos. Chem. Phys . 6 , 3583 - 3601 .  

  56. Storelvmo , T., Kristjánsson , J. E. , Ghan , S. , Kirkevag , A. , Seland , O. and Iversen , T. 2006b. Predicting cloud droplet number in CAM-Oslo. J. Geophys. Res . 111 , D24208, doi: https://doi.org/10.1029/2005JDO06300 .  

  57. Takemura , T. , Nozawa , T. , Emori , S. , Nakajima , T. Y. and Nakajima , T. 2005 . Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model . J. Geophys. Res . 110 , D02202 , doi: https://doi.org/10.1029/2004JD005029 .  

  58. Teng , H. , Buja , L. E. and Meehl , G. A. 2006 . Twenty-first century climate change commitment from a multi-model ensemble. Geophys. Res. Lett . 33 , L07706, doi: https://doi.org/10.1029/2005GL024766 .  

  59. Textor , C. , Schulz , M. , Guibert , S. , Kinne , S. , Balkanski , Y. and co-authors. 2006 . Analysis and quantification of the diversities of aerosol life cycles within AeroCom . Atm. Chem. Phys . 6 , 1777– 1813 .  

  60. Twomey , S. 1977 . The influence of pollution on shortwave albedo of clouds . J. Atmos. Sci . 34 , 1149 – 1152 .  

  61. Twomey , S. 1991 . Aerosols, Clouds and Radiation . Atmos. Envimn . 11 , 2435 – 2442 .  

  62. von Storch , H. and Zwiers , E W. 1999 . Statistical analysis in climate research . Cambridge University Press, 484 pp .  

  63. Williams , K. D. , Jones , A. , Roberts , D. L. , Senior , C. A. and Woodage , M. J. 2001 . The response of the climate system to the indirect effects of anthropogenic sulfate aerosol. Climate Dyn . 17 , 845 - 856 .  

comments powered by Disqus