Start Submission Become a Reviewer

Reading: Response in extremes of daily precipitation and wind from a downscaled multi-model ensemble ...

Download

A- A+
Alt. Display

Original Research Papers

Response in extremes of daily precipitation and wind from a downscaled multi-model ensemble of anthropogenic global climate change scenarios

Authors:

Jan Erik Haugen ,

The Norwegian Meteorological Institute, P.O. Box 43 Blindern, 0313 Oslo, NO
X close

Trond Iversen

The Norwegian Meteorological Institute, P.O. Box 43 Blindern, 0313 Oslo; Department of Geosciences, University of Oslo, NO
X close

Abstract

Time-slices of eight global climate model (GCM) response simulations of the IPCC IS92a, CMIP2, SRES A2, B2 and A1B greenhouse gas scenarios have been downscaled using the HIRHAM atmospheric regional climate model (RCM). The area covers Central and Northern Europe, adjacent sea-areas and Greenland. The GCM data were provided from the Max Planck Institute, Germany (MPI), the Hadley Centre, U.K. (HC), the Bjerknes Centre, Norway (BCCR) and University of Oslo, Norway (UiO). The resulting ensemble covers a range of future climate realizations from different global models, different greenhouse gas scenarios and natural climate variability. In order to present trends in statistical parameters including extreme events and their return periods, the downscaled response data are combined as an ensemble of equally valid possible realizations. The combined statistics is obtained after adjustments accounting for (i) different set-ups of the respective GCMs in producing the control climate and (ii) the variable range of time between the control and scenario periods. We find that annual extreme events of daily precipitation and wind speed in the control climate become more frequent in the scenario period over large areas in Northern Europe. The variability in the regional result appears sensitive to the phase of the Scandinavian pattern.

How to Cite: Haugen, J.E. and Iversen, T., 2008. Response in extremes of daily precipitation and wind from a downscaled multi-model ensemble of anthropogenic global climate change scenarios. Tellus A: Dynamic Meteorology and Oceanography, 60(3), pp.411–426. DOI: http://doi.org/10.1111/j.1600-0870.2007.00315.x
  Published on 01 Jan 2008
 Accepted on 3 Jan 2008            Submitted on 3 May 2007

References

  1. Ådlandsvilc , B. 2008 . Marine downscaling of a future climate scenario for the North Sea. Tellus 60A , doi: https://doi.org/10.1111/j.1600-0870.2008.00311.x .  

  2. Allen , M. R. , Stott , P. A. , Mitchell , J. F. B. , Schnur , R. and Delworth , T. L. 2000 . Quantifying the uncertainty in forecasts of anthropogenic climate change. Nature 407 ( Oct. 5 ), 617 - 620 .  

  3. Benestad , R. E. 2005 . Climate change scenarios for Northern Europe from multi-model IPCC AR4 climate simulations . Geophys. Res. Lett . 32 , L17704 , doi: https://doi.org/10.1029/2005GL023401 .  

  4. Bjørge , D. , Haugen , J. E. and Nordeng , T. E. 2000 . Future climate in Norway. DNMI Research Rep . 103,41 pp. Norwegian Meteorological Institute, P. O. Box 43 Blindern, N-0313 Oslo, Norway, ISSN 0332 - 9879 .  

  5. Boer , G. J. 1994 . Predictability regimes in atmospheric flow . Mon. Wea. Rev . 122 , 2285 – 2295 .  

  6. Barnston , A. G. and Livezey , B. E. 1987 . Classification, seasonality and persistence of low-frequency atmospheric circulation patterns . Mon. Wea. Rev 115 , 1083 – 1126 .  

  7. Castro , C. L. , Pielke , Sr., R. A. and Leoncini , G . 2005 . Dynamical downscaling: Assessment of value retained and added using the Re-gional Atmospheric Modeling System (RAMS). J. Geophys. Res . 110 , D05108, doi: https://doi.org/10.1029/2004JD004721 .  

  8. Christensen , J. H. , Machenhauer , B. , Jones , R. G., Schär , C. , Ruti , P. M. and co-authors . 1997 . Validation of present-day regional climate simulations over Europe: LAM simulations with observed boundary conditions. Clim. Dyn . 13 , 489 - 506 .  

  9. Christensen , O. B. and Christensen , J. H. 1998 . Very high-resolution climate simulations over Scandinavia. Present Climate. J. Climate 11 ( 12 ), 3204 - 3229 .  

  10. Christensen , J. H., Räisdnen , J. , Iversen , T. , Bjorge , D. , Christensen , O. B. and co-authors . 2001. A synthesis of regional climate change simulations - A Scandinavian perspective. Geophys. Res. Lett . 28 , 1003 - 1006 .  

  11. Corti , S. , Molteni , F. and Palmer , T. N., 1999 . Signature of recent climate change in frequencies of natural atmospheric circulation regimes . Na-ture 398 , 799 – 802 .  

  12. Denis , B. , Laprise , R. , Caya , D. and Cote , J. 2002 . Downscaling ability of one-way nested regional climate models: the big-brother experiments . Climate Dynam . 18 , 627 – 646 .  

  13. Engen-Skaugen , T. , Haugen , J. E. and Tveito , O. E. 2007 . Temperature scenarios for Norway: From regional to local scale. Clim. Dynam . 29 , 441 - 453 .  

  14. Frogner , I.-L. and Iversen , T. 2002 . High-resolution limited-area ensem-ble predictions based on low-resolution targeted singular vectors . Q. J. R. MeteoroL Soc . 128 , 1321 – 1341 .  

  15. Furevilc , T. , Bentsen , M. , Drange , H. , Kindem , I. K. T. , Kvamsto , G. and co-authors . 2003. Description and validation of the Bergen Climate Model: ARPEGE coupled with MICOM. Clim. Dynam . 21 , 27 – 51 , doi: https://doi.org/10.1007/s00382-003-0317-5 .  

  16. Giorgi , E and Means , L. O. 1991 . Approaches to the simulation of regional climate change: A review. Rev. Geophysics 29 , 191 - 216 .  

  17. Giorgi , E , Hewitson , B. , Christensen , J. , Hulme , M. , von Storch , H. and co-authors. 2001. Regional climate information - evalua-tion and projections. In: Climate Change 2001: The Scientific Basis (EdsHoughton, J. T. et al.). Cambridge University Press, UK. 881 pp .  

  18. Gordon , C. , Cooper , C. , Senior , C. A. , Banks , H. , Gregory , J. M. and co-authors . 2000. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim. Dynam . 16 , 147 - 166 .  

  19. IPCC . 2001 . Climate Change 2001. The Scientific Basis. (EdsHoughton, J. T. et al). Cambridge University Press, UK. 881 pp .  

  20. IPCC . 2007 . Climate Change 2007: The Physical Science Basis. Sum-mary for Policymakers. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. WMO, Geneva, Switzerland, 18 pp .  

  21. Iversen , T. , Kristiansen , J. , Jung , T. and Barkmeijer , J. 2008 . Optimal at-mospheric forcing perturbations for the cold ocean warm land pattern. Tellus 60A , doi: https://doi.org/10.1111/j.1600-0870.2008.00310.x  

  22. Jones , R. G. , Murphy , J. M. and Noguer , M. 1995 . Simulation of climate change over Europe using a nested regional-climate model. I: Assess-ment of control climate, including sensitivity to location of lateral boundaries . Q. J. R. MeteoroL Soc . 121 , 1413 – 1449 .  

  23. Jones , R. G. , Murphy , J. M. , Noguer , M. and Keen , A. B. 1997 . Simulations of climate change over Europe using a nested regional climate model. II: Comparison of driving and regional model re-sponses to a doubling of carbon dioxide . Q. J. R. MeteoroL Soc . 123 , 265 – 292 .  

  24. Jones , R. , Hassell , D. and Murphy , J. 1999 . Configuring new climate models for Europe with improved climatologies via better representation of physical processes. UKMO second year report for MERCURE, EC contract ENV4-CT 97 – 0485 .  

  25. KanestrÅm , I. , Pedersen , K. and Slchtun , H. 1985 . Major stationary ridges and troughs at 500mb . Geophysica Norvegica 33 , 1 – 40 .  

  26. Kirkevø.g , A. , Iversen , T. , Seland , O. , Debernard , J. B. , Kristjánsson , J. E. and co-authors . 2008. Aerosol-cloud-climate interactions in the climate model CAM-Oslo. Tellus 60A , doi: https://doi.org/10.1111/j.1600-0870.2008.00313.x .  

  27. Køltzow , M. , Iversen , T. and Haugen , J. E., 2008 . Extended Big-Brother experiments: The role of lateral boundary data quality and size of integration domain in regional climate modeling. Tellus 60A , doi: https://doi.org/10.1111/j.1600-0870.2008.00309.x .  

  28. McAveney , B. J. , Covey , C. , Joussaume , S. , Kattsov , V , Kitoh , A. and co-authors. 2001. Model evaluation. In: Climate Change 2001: The Scientific Basis (Eds Houghton , J. T. et al). Cambridge University Press , UK . 881 pp .  

  29. Nakicenovic , N. , Alcamo , J. , Davis , G., de Vries , B. , Fenhann , J. and co-authors . 2000. Special Report on Emissions Scenarios (SRES). Working Group BI of the Intergovernmental Panel on Climate Change (IPCC), 595 pp . Cambridge University Press . ( http : //www.grida.no/climate/ipcc/emission/index.htm)  

  30. Palmer , T. N. and Räisänen , J. 2002 . Quantifying risk of extreme seasonal precipitation events in a changing climate . Nature 415 , 512 – 514 .  

  31. Räisdnen , J. 2001 . CO2-induced climate change in CMIP2 experiments; quantification of agreement and role of internal variability . J. Climate 14 , 2088 – 2104 .  

  32. Räisänen , J. and Palmer , T. N. 2001 . A probability and decision-model analysis of a multimodel ensemble of climate change simulations . J. Climate 14 , 3212 – 3226 .  

  33. Räisdnän , J. , Hansson , U. , Ullerstig , A. , Doscher , R. , Graham , L. P. and co-authors. 2004 . European climate in the late twenty-first century: Regional simulations with two driving global models and two forcing scenarios . Climate Dynam . 22 , 13 - 31 .  

  34. Rinke , A. , Gerdes , R., K. Dethloff , T. Kandlbinder , M. , Karcher , F. and co-authors . 2003. A case study of the anomalous Arctic sea ice conditions during 1990: Insights from coupled and uncoupled re-gional climate model simulations. J. Geophys. Res . 108 ( D9 ), 4275 , doi: https://doi.org/10.1029/2002JDO03146 .  

  35. Roeckner , E. , Arpe , K. , Bengtsson , L. , Christoph , M. , Claussen , M. and co-authors . 1996 . The atmospheric general circulation model ECHAM4: model description and simulation of present-day climate: MPI Report 218.  

  36. Roeckner , E. , Bengtsson , L. , Feichter , J. , Lelieveld , J. and Rodhe , H. 1999 . Transient climate change simulations with a coupled atmosphere-ocean GCM including the tropospheric sulfur cycle. J. Climate 12 , 3004 - 3032 .  

  37. Seland , Ø. , Iversen , T. and Kirkevhg , A. 2008 . Sensitivity of aerosol cli-mate interactions to basic assumptions in the CAM-Oslo atmospheric GCM. Tellus 60A , in press .  

  38. Sorteberg , A. , Furevik , T. , Drange , H. and Kvamsto , N. G. 2005 . Ef-fects of simulated natural variability on Arctic temperature projec-tions , Geophys. Res. Lett . 32 , L18708 , doi: https://doi.org/10.1029/2005GL023404 .  

  39. Von Storch , H. , Langenberg , H. and Feser , F . 2000 . A spectral nudging technique for dynamical downscaling purposes, Mon. Wea. Rev . 128 , 3664 - 3672 .  

  40. Wallace , J. M. and Gutzler , D. S., 1981 . Teleconnections in the geopoten-tial height field during the Northern Hemispheric winter . Mon. Wea. Rev . 109 , 784 – 812 .  

  41. Wallace , J. M. , Zhang , Y. and Bajuk , L. 1996 . Interpretation of inter-decadal trends in Northern Hemispheric surface air temperature . J. Climate 9 , 249 – 259 .  

  42. Wilby , R. L. and Wigley , T. M. L. 1997 . Downscaling general circula-tion model output; a review of methods and limitations . Prog. Phys. Geogra . 21 , 530 – 548 .  

comments powered by Disqus