Start Submission Become a Reviewer

Reading: Structure of the precipitable water field over Mount Etna

Download

A- A+
Alt. Display

Original Research Papers

Structure of the precipitable water field over Mount Etna

Authors:

Min Zhu,

Environmental Systems Science Centre, University of Reading, Reading RG6 6AL, GB
X close

Geoff Wadge ,

Environmental Systems Science Centre, University of Reading, Reading RG6 6AL, GB
X close

Rachel J. Holley,

Environmental Systems Science Centre, University of Reading, Reading RG6 6AL, GB
X close

Ian N. James,

Department of Meteorology, University of Reading, Reading RG6 6BB, GB
X close

Peter A. Clark,

Joint Centre for Mesoscale Meteorology, Met Office, Reading RG6 6BB, GB
X close

Changgui Wang,

Joint Centre for Mesoscale Meteorology, Met Office, Reading RG6 6BB, GB
X close

Margaret J. Woodage

Environmental Systems Science Centre, University of Reading, Reading RG6 6AL, GB
X close

Abstract

The structure of the precipitable water (PW) field over mountains is difficult to observe and can have a complex form. We demonstrate a method to analyse this structure with a case study at the Etna volcano in Sicily. The method involves decomposition of thePWfield, power spectral analysis and high-resolution numerical modelling including an experiment to showthe sensitivity to solar radiative forcing which can drive the mesoscale circulations and consequently the complex patterns ofwater vapour advection in complex terrain near a coastline. ThePWdecomposition and power spectral analysis were applied to both the model data and remotely sensed MODIS data. The PW field has two structural components: a horizontal mean component and a horizontal perturbation component that possesses a wave number k dependence of k−5/3 in the mesoscale range. For our case example (summer, mid-morning) we show that the horizontally perturbed component is largely driven by the combined land-sea and upslope breeze effects.

How to Cite: Zhu, M., Wadge, G., Holley, R.J., James, I.N., Clark, P.A., Wang, C. and Woodage, M.J., 2008. Structure of the precipitable water field over Mount Etna. Tellus A: Dynamic Meteorology and Oceanography, 60(4), pp.679–687. DOI: http://doi.org/10.1111/j.1600-0870.2007.00317.x
  Published on 01 Jan 2008
 Accepted on 8 Jan 2008            Submitted on 4 May 2007

References

  1. Avara , P. , Kays , M. 1971 . The effect of interpolation of data upon the harmonic coefficients. ECOM, 5354, Defense Technical Information Center, 33 pp .  

  2. Baines , P. G. 1995 . Topographic effects in stratified flows , Cambridge University Press , Cambridge , 482 pp .  

  3. Balmino , G. 1993 . The spectra of the topography of the Earth, Venus and Mars . Geophys. Res. Lett . 20 , 1063 – 1066 .  

  4. Bastin , S. , Champollion , C. , Bock , O. , Drobinski , P. 2005 . On the use of GPS tomography to investigate water vapour variability during a Mistral/sea breeze event in southeastern France. Geophys. Res. Lett . 32 , L05808, DOI: https://doi.org/10.1029/2004GL021907 .  

  5. Cho , J. Y. N. , Zhu , Y. , Newell , R. E. , Anderson , B. E. , Barrick , J. D. and co-authors . 1999 . Horizontal wavenumber spectra of winds, tem-perature and trace gases during the Pacific Exploratory Missions: 1 . Climatology. J. Geophys. Res . 104 ( D5 ), 5697-5716 .  

  6. Favalli , M. , Mazzarini , E , Pareschi , M. T. and Boschi , E. 2004 . Role of local wind circulation in plume monitoring at Mt. Etna volcano (Sicily): Insights from a mesoscale numerical model . Geophys. Res. Lett . 31 , L09105 , doi: https://doi.org/10.1029/2003GL019281 .  

  7. Foster , J. and Bevis , M. 2003 . Lognormal distribution of precip-itable water in Hawaii. Geochem. Geophys. Geosys . 4 ( 7 ), 1065 , doi : https://doi.org/10.1029/2002GC000478 .  

  8. Hanssen , R. 2001 . Radar interferometry data interpretation and data analysis , Kluwer Academic , Dordrecht , 308 pp .  

  9. Koshyk , J. N. , Boville , B. A. , Hamilton , K. , Manzini , E. and Shibata , K. 1999 . Kinetic energy spectrum of horizontal motions in middle-atmosphere models . J. Geophys. Res . 104 , 27177 – 27190 .  

  10. Kuo , Y.-H. , Zou , X. and Guo , Y.-R. 1996 . Variational assimilation of precipitable water using a nonhydrostatic mesoscale adjoint model. Part I: Moisture retrieval and sensitivity experiment. Mon. Weather Re v . 124 , 122 – 147 .  

  11. Li , Z. , Muller , J.-P. , Cross , P. and Fielding , E. J. 2005 . In-terferometric synthetic aperture radar (InSAR) atmospheric cor-rection: GPS, Moderate Resolution Imaging Spectroradiometer (MODIS) and InSAR integration./ . Geophys. Res . 110 ( B3 ), B03410 , doi: https://doi.org/10.1029/2004JB003446 .  

  12. Met Office 2004 “Unified Model User Guide” , Available online at: http://www.cgam.nerc.ac.uk/um/docs/  

  13. Massonnet , D. and Feigl , K. L. 1998 . Radar interferometry and its ap-plication to changes in the Earth’s surface . Rev. Geophys . 36 ( 4 ), 441 – 500 .  

  14. Miranda , P. M. A. and James , I. N. 1992 . Non-linear three-dimensional effects on gravity-wave drag: Splitting flow and breaking waves . Q. J. R. Meteorol. Soc . 118 , 1057 – 1081 .  

  15. Nastrom , G. D. and Gage , K. S. 1985 . A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft . J. Atmos. Sci . 42 ( 9 ), 950 – 960 .  

  16. Remy , D. , Bonvalot , S. , Briole , P. and Murakami , M. 2003 . Accurate measurements of tropospheric effects in volcanic areas from SAR interferometry data: Application to Sakurajima volcano (Japan) . Earth Planet. Sci. Lett . 67 ( 30 ), 1 – 12 .  

  17. Rotunno , R. and Ferretti , R. 2001 . Mechanisms of intense Alpine rainfall. J. Atmos. Sc i . 38 , 1732 – 1749 .  

  18. Skamarock , W. C. 2004 . Evaluating mesoscale NWP models using ki-netic energy spectra. Mon. Wea. Re v . 132 , 3019 – 3032 .  

  19. Trenberth , E. , Fasullo , J. and Smith , L. 2005 . Trends and variability in column-integrated atmospheric water vapour. Climate Dynam . 24 , 741 – 758 , DOI https://doi.org/10.1007/s0038-005-0017-4 .  

  20. Wadge , G. , Webley , P. W. , James , I. N. , Bingley , R. , Dodson , A. and co-authors. 2002. Atmospheric models, GPS and InSAR measurements of the tropospheric water vapour field over Mount Etna . Geophys. Res. Lett . 29 ( 19 ), 1905 , doi: https://doi.org/10.1029/2002GL015159 .  

  21. Zhu , M. , Wadge , G. , Holley , R. J. , James , I. N. , Clark , P. A. and co-authors. 2007. High resolution forecast models of water vapor over mountains: comparison with MERIS and Meteosat data. Geosc. Rem. Sens. Lett . 4 ( 3 ), 401 - 405 .  

comments powered by Disqus