Start Submission Become a Reviewer

Reading: Aerosol-climate interactions in the CAM-Oslo atmospheric GCM and investigation of associated...

Download

A- A+
Alt. Display

Original Research Papers

Aerosol-climate interactions in the CAM-Oslo atmospheric GCM and investigation of associated basic shortcomings

Authors:

Øvind Seland ,

Norwegian Meteorological Institute, P.O. Box 43 Blindern, 0313 Oslo, NO
X close

Trond Iversen,

Department of Geosciences, University of Oslo, P.O. Box 1022 Blindern, 0315 Oslo, NO
X close

Alf Kirkevåg,

Norwegian Meteorological Institute, P.O. Box 43 Blindern, 0313 Oslo, NO
X close

Trude Storelvmo

Department of Geosciences, University of Oslo, P.O. Box 1022 Blindern, 0315 Oslo, NO; Institute for Atmospheric and Climate Science, ETHZurich, Zürich, CH
X close

Abstract

The paper discusses some challenges in aerosol-climate modelling. CAM-Oslo, extended from NCAR-CAM3, employs an aerosol module for sea-salt, dust, sulphate, black carbon (BC) and particulate organic matter (OM). Primary aerosol size-distributions are modified by condensation, coagulation and wet-phase processes. Aerosol optics and cloud droplet numbers use look-up tables constructed from first principles. Ground level sulphate and sea-salt are generally well modelled, BCandOMare slightly underestimated (uncertain), and dust is considerably (factor∼2) underestimated. Since non-desert dust, nitrate, anthropogenic secondary organics, and biological particles are omitted, aerosol optical depths (0.12) are underestimated by 10–25%. The underestimates are large in areas with biomass burning and soil dust. The direct and indirect forcing of aerosol increments since pre-industrial time are estimated at +0.031Wm−2 and −1.78Wm−2, respectively. Although the total absorption AOD probably is slightly underestimated, the BC contributes to DRF with double strength compared to the AeroCom average. Main reasons for this include: internal BC-mixing (+0.2Wm−2), accumulation mode BC-agglomerates (+0.05Wm−2), assumed aitken-mode OM-BC mixture (+0.1Wm−2), large BC fraction (36%) above 500 hPa, and high low-level cloudiness. Using a prognostic CDNC and process parametrized CCN activation instead of assuming CDNC are equal to CCN, the indirect forcing is 36% smaller.

How to Cite: Seland, Ø., Iversen, T., Kirkevåg, A. and Storelvmo, T., 2008. Aerosol-climate interactions in the CAM-Oslo atmospheric GCM and investigation of associated basic shortcomings. Tellus A: Dynamic Meteorology and Oceanography, 60(3), pp.459–491. DOI: http://doi.org/10.1111/j.1600-0870.2007.00318.x
  Published on 01 Jan 2008
 Accepted on 7 Jan 2007            Submitted on 3 May 2007

References

  1. Albrecht , B. A. 1989 . Aerosols, cloud microphysics and fractional cloudiness . Science 245 , 1227 – 1230 .  

  2. Abdul-Razzalc , H. and Ghan , S. J., 2000. A Parameterization of aerosol activation. Part 2: multiple aerosol types . J. Geophys. Res . 105 ( D ), 6837-6844 .  

  3. Baker , M. B., 1993 . Variability in concentrations of cloud condensation nuclei in the marine cloud-topped boundary layer . Tellus 45B , 458 – 472 .  

  4. Barth , M. C. , Rasch , P. J. , Kiehl , J. T. , Benlcowitz , C. M. and Schwartz , S. E. 2000 . Sulphur chemistry in the National Center for Atmospheric Research Community Climate Model: Description, evaluation, fea-tures, and sensitivity to aqueous chemistry . J. Geophys. Res . 105 , 1387 – 1415 .  

  5. Berntsen , T. K. and Isaksen , I. S. A., 1997 . A global three-dimensional chemical transport mode for the troposphere. 1. Model description and CO and ozone results . J. Geophys. Res . 102 , 21239 – 21281 .  

  6. Binkowski , F. S. and Shanlcar , U., 1995 . The Regional Particulate Matter Model: 1. Model description and preliminary results . J. Geophys. Res . 100 , 26191 – 26209 .  

  7. Bond , T. C. and Bergstrom , R. W. 2006 . Light Absorption by carbona-ceous particles: An investigative review . Aerosol Sci TechnoL 40 , 27 – 68 .  

  8. Bond , T. C. , Wehner , B. , Plewlca , A. , Wiedensohler , A. , Heintzenberg , J. and Charlson , R. J., 2006 . Climate-relevant properties of primary particulate emissions from oil and natural gas combustion . Atmos. Environ . 40 , 3574 – 3587 .  

  9. Boville , B. A. , Rasch , P. J., Hack and McCaa , J. R. 2006. Representation of Clouds and Precipitation Processes in the Community Atmosphere Model Version 3. J. Climate 19 , 2184-219 8 .  

  10. Charlson , R. J. , Schwartz , S. E. , Hales , J. M. , Cess , R. D., Coakley , and co-authors . 1992 . Climate forcing by anthropogenic aerosols. Science 255 , 423 - 430 .  

  11. Chen , C. and Cotton , W. R. 1987 . The physics of the marine stratocumulus-capped mixed layer . J. Atmos. Sci . 44 , 2951 – 2977 .  

  12. Chuang , C. C. and Penner , J. E. 1995 . Effects of anthropogenic sulphate on cloud drop nucleation and optical properties . Tellus 47B , 566 – 577 .  

  13. Collins , W. D. , Rasch , P. J. , Boville , B. A. , Hack , J. J. , McCaa , J., R. and co-authors . 2004. Description of the NCAR Community Atmosphere Model (CAM3). Tech. Rep. NCAR/TN-464±STR, National Center for Atmospheric Research, Boulder, CO, 226 pp .  

  14. Collins , W. D. , Rasch , P. J. , Boville , B. A. , Hack , J. J. , McCaa , J., R. and co-authors. 2006a . The Formulation and atmospheric simulation of the Community Atmospheric Model Version 3 (CAM3). J. Climate 19 , 2144 - 2161 .  

  15. Collins , W. D. , Bitz , C. M. , Blackmon , M. L. , Bonan , G. B., Brether-ton , and co-authors . 2006b. The Community Climate System Model Version 3 (CCSM3) . J. Climate 19 , 2122 - 2143 .  

  16. Cooke , W. E and Wilson , J. J. N., 1996 . A global black carbon aerosol model . J. Geophys. Res . 101 , 19305 – 19409 .  

  17. Dentener , E , Kinne , S. , Bond , T. , Boucher , O. , Cofala , J. and co-authors . 2006. Emissions of primary aerosols and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom Atm. Chem. Physics 6 , 4321 - 4344 .  

  18. Dubovik , O. , Holben , B. , Eck , T. F. , Smirnov , A. , Kaufman , Y. J. and co-authors. 2002 . Variability of absorption and optical properties of key aerosol types observed in worldwide locations . J. Atm. Sci . 59 , 590 - 608 .  

  19. Dusek , U. , Frank , G. P. , Hildebrandt , L. , Curtius , J. , Schneider , J. and co-authors . 2006. Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Science 312 , 1375 - 1378 .  

  20. Easter , R. C. , Ghan , S. J. , Zhang , Y. , Saylor , R. D. , Chapman , E. G. and co-authors . 2004. Mirage: Model description and evalua-tion of aerosols and trace gases. J. Geophys. Res . 109 , D20210, doi: https://doi.org/10.1029/2004JD004571 .  

  21. Ghan , S. J. , Leung , L. R. , Easter , R. C. and Abdul Razzalc , H. 1997 . Prediction of droplet number in a general circulation model . J.Geophys.Res . 102 , 2 1777-2194 .  

  22. Ghan , S. J. , Guzman , G. and Abdul-Razzak , H. 1998 . Competition be-tween sea salt and sulfate particles as cloud condensation nuclei . J. Atmos. Sci . 55 , 3340 – 3347 .  

  23. Ghan , S. J. , Laulainen , N. , Easter , R. , Wagener , R. , Nemesure , S. and co-authors. 2001. Evaluation of aerosol direct radiative forcing in MI-RAGE . J. Geophys. Res . 106 ( D6 ), 5295 – 5316 .  

  24. Guyon , P. Boucher , O. , Graham , B. , Beck , J. , Mayol-Bracero , O. L. and co-authors . 2003. Refractive index of aerosol particles over the Ama-zon tropical forest during LBA-EUSTACH 1999. J. Aerosol Sci . 34 ( 7 ), 883 - 907 .  

  25. Hack , J. .J. , Caron , J. M. , Yeager , S. G. , Oleson , K. W. , Holland , M. M. and co-authors. 2006 . Simulations of the global hydrological cycle in the CCSM Community Atmosphere Model Version 3 (CAM3): Mean features . J. Climate 19 , 2199 - 2221 .  

  26. Han , Q. , Rossow , W. B. and Lacis , A. A., 1994 . Near-global-survey of effective droplet radii in liquid water clouds using ISCCP data . J. Clim . 7 , 465 – 497 .  

  27. Harrison , E. F. , Minnis , R , Barlcstrom , B. R. , Ramanathan , V. , Cess , R. D. and co-authors . 1990 . Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment. J. Geophys. Res . 95 , 18687 - 18703 .  

  28. Henze , D. K. and Seinfeld , J. H., 2006 . Global secondary organic aerosol from isoprene oxidation . Geophys. Res. Lett . 33 , L09812 , doi: https://doi.org/10.1029/2006GL025976 .  

  29. Iversen , T. and Seland , O . 2002 . A scheme for process-tagged SO4 and BC aerosols in NCAR-CCM3. Validation and sen-sitivity to cloud processes . J. Geophys. Res . 107 ( D24 ), 4751, doi: https://doi.org/10.1029/2001JD000885 .  

  30. Iversen , T. and Seland , O . 2003 . Correction to “A scheme for process-tagged SO4 and BC aerosols in NCAR-CCM3. Validation and sensitivity to cloud processes” . J. Geophys. Res . 108 ( D16 ), 4502, doi: https://doi.org/10.1029/2003JD003840 .  

  31. Iversen , T. and Seland , O . 2004 . The role of cumulus parameterisation in global and regional sulphur transport . In: Air Pollution Modeling and Its Application XVI , (Eds Borrego , C. and Incecilc , S. ), 225 - 233 . Kluwer Academic Publications , New York .  

  32. Iversen , T. , Kirkevhg , A. , Kristjánsson , J. E. and Seland , O. 2001 . Climate effects of sulfate and black carbon estimated in a global climate model. In: Air Pollution Modeling and Its Application XIV, (Eds Gryning , S.-E. and Schiermeier , F. A. ) 335 - 342 , Kluwer Acad. , Norwell, Mass .  

  33. Iversen , T. , Kristjánsson , J. E. , Kirkevhg , A. and Seland , O. 2005 . Calculated feedback effects of climate change caused by anthro-pogenic aerosols. RegClim General Technical Report No. 8 , 111 - 120 .  

  34. Jacobson , M., 2001 . Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols . Nature 409 , 695 – 697 .  

  35. Jaenicke , R. 2005 . Abundance of cellular material and proteins in the atmosphere . Science 308 , 73 .  

  36. Janzen , J. 1979 . The refractive index of colloidal carbon . J. Colloid and Interface Sci . 69 ( 3 ), 436 – 447 .  

  37. Kiehl , J. T. and Trenberth , K. E. 1997 . Earth’s Annual Global Mean Energy Budget . Bull. Am. MeteoroL Soc . 78 , 197 – 208 .  

  38. Kiehl , J. T. , Hack , J. J. , Bonan , G. B. , Boville , B. B. , Williamson , D. L. and co-authors . 1998 . The National Center for Atmospheic Re-search Community Climate Model: (CCM3). J. Climate 11 , 1131 - 1149 .  

  39. Kiehl , J. T. , Schneider , T. L. , Rasch , P. J. and Barth , M. C. 2000 . Radiative forcing due to sulfate aerosols from simulations with the National Center for Atmospheic Research Community Climate Model, Version 3 . J. Geophys. Res . 105 ( D1 ), 1441 – 1457 .  

  40. Kinne , S. , Schulz , M. , Textor , C. , Guibert , S. , Ballcanslci , Y. and co-authors. 2006 . An AeroCom initial assessment - optical properties in aerosol component modules of global models . Atm. Chem. Phys . 6 , 1815– 1834 .  

  41. Kirkevøg , A. and Iversen , T. 2002 . Global direct radiative forcing by process-parameterized aerosol optical properties . J. Geophys. Res . 107 ( D20 ), 4433 , doi: https://doi.org/10.1029/2001JD000886 .  

  42. Kirkevøg , A. , Iversen , T. , Seland , O. and Kristjánsson , J. E. 2005. Revised schemes for aerosol optical parameters and cloud condensation nuclei in CCM-Oslo. Institute Report Series, Department of Geosciences, University of Oslo, 29 pp, ISBN 82-91885-31-1, ISSN 1501-6854-128.  

  43. Kirkevøg , A. , Iversen , T. , Kristjánsson , J. E. , Seland , O. and Debernard , J. B. 2008a . On the additivity of climate response to anthropogenic aerosols and CO2, and the enhancement of future global warming by carbonaceous aerosols . Tellus 60 A this issue .  

  44. Kirkevøg , A. , Iversen , T. , Seland , O. , Debernard , J. B. , Storelvmo , T., and co-authors. 2008b . Aerosol-cloud-climate interactions in the climate model CAM-Oslo. Tellus 60 A this issue .  

  45. Koch , D. , Schmidt , G. A. and Field , C. V. 2006 . Sulfur, sea salt and radionuclide aerosols in GISS ModelE . J. Geophys. Res . 111 , D06206 , doi: https://doi.org/10.1029/2004JD005550 .  

  46. Köpke , P. , Hess , M. , Schuh , I. and Shettle , E. P. , 1997 . Global Aerosol Data Set . MPI Report no. 243 .  

  47. Kristjánsson , J. E. 2002 . Studies of the aerosol indirect effect from sul-fate and black carbon aerosols . J. Geophys. Res . 107 ( D15 ), 4246 , doi: https://doi.org/10.1029/2001JD000887 .  

  48. Kristjánsson , J. E. , Iversen , T. , Kirkevøg , A. , Seland , O. and Debernard , J . 2005 . Response of the climate system to aerosol direct and indi-rect forcing: Role of cloud feedbacks. J. Geophys. Res . 110 , D24206, doi: https://doi.org/10.1029/2005JD006299 .  

  49. Liao , H. and Seinfeld , J. 2005 . Global impacts of gas-phase-chemistry-aerosol interactions on direct radiative forcing by anthropogenic aerosols and ozone . J. Geophys. Res . 110 ( D18 ), D18208, 4297 , doi: https://doi.org/10.1029/2005JD005907 .  

  50. Liu , L. , Lacis , A. A. Carlson , B. E. Mishchenlco , M. I. and Cairns , B. 2006 . Assessing Goddard Institute for Space Studies Mod-elE aerosol climatology using satellite and ground-based mea-surements: A comparison study . J. Geophys. Res . 111 , D20212 , doi: https://doi.org/10.1029/2006JD007334 .  

  51. Lohmann , U. and Feichter , J. 2005 . Global indirect aerosol effects: a review . Atmos. Chem. Phys . 5 , 715 – 737 .  

  52. Lohmann , U. and Leck , C. 2005 . Importance of submicron surface-active organic aerosols for pristine Arctic clouds . Tellus 57B , 261 – 268 .  

  53. Lohmann , U. , Feichter , J. , Penner , J. E. and Leaitch , W. R. 2000 . Indirect effect of sulfate and carbonaceous aerosols: A mechanistic treatment . J. Geophys. Res . 105 , 12193 – 12206 .  

  54. Mørtensson , E. M. , Nilson , E. D. , de Leeuw , G. , Cohen , L. H. and Hans-son , H.-C., 2003 . Laboratory simulations and parameterization of the primary marine aerosol production . J. Geophys. Res . 108 ( D9 ), 4297 , doi: https://doi.org/10.1029/2002JD002263 .  

  55. Ogren , J. A. and Charlson , R. J. 1983 . Elemental carbon in the atmo-sphere: Cycle and lifetime . Tellus 35B , 241 – 254 .  

  56. Penner , J. E. , Quaas , J. , Storelvmo , T. , Takemura , T. , Boucher , O. and co-authors . 2006. Model intercomparison of indirect aerosol effects. Atm. Chem. Phys . 6 , 3391 - 340 .  

  57. Quian , Y. , Kaiser , D. R , Leung , L. R. and Xu , M. 2006 . More frequent cloud-free sky and less surface solar radiation in China from 1955-2000 . Geoph. Res. Letters 33 , L01812 , doi: https://doi.org/10.1029/2005GL024586 .  

  58. Rasch , P. J. and Kristjánsson , J. E. 1998 . A comparison of the CCM3 model climate using diagnosed and predicted condensate parameteri-zations . J. Climate 11 , 1587 – 1614 .  

  59. Rogers , R .R. and Yau , M. K., 1989 . A short course in cloud-physics, In-ternational series in Natural Philosophy volume 113, Pergamon Press.  

  60. Rossow , W. B. and Dueflas , E. N. 2004 . The international Satellite Cloud Climatology Project (ISCCP) . Bull. Am. MeteoroL 85 , 167 – 172 .  

  61. Schulz , M. , Textor , C. , Kinne , S. , Ballcanslci , Y. , Bauer , S. and co-authors. 2006. Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations . Atm. Chem. Phys . 6 , 5225 - 5246 .  

  62. Schmidt , G. A. , Ruedy , R. , Hansen , J. E. , Aleinov , I. , Bell , N. and co-authors. 2006. Present day atmospheric simulations using GISS Mod-elE: Comparison to in-situ, satellite and reanalysis data , J. Climate 19 , 153 - 192 .  

  63. Seinfeld , J. H. and Pandis , S. N. 1998 . Atmospheric Chemistry and Physcis: From Air Pollution to Climate Change , 1326 pp ., John Wiley , New York .  

  64. Slingo , A., 1989 . A GCM parameterisation for the shortwave radiative properties of water clouds . J.Atmos.Sci . 46 ., 1419 – 1427 .  

  65. Sokolik , I. N. and Toon , O. B. 1999 . Incorporation of mineralogi-cal composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths. J. Geophys. Res . 104 ( D8 ), 9423 – 9444 .  

  66. Solomon , S. , Qin , D. , Manning , M. , Alley , R. B. , Berntsen , T. and co-authors . 2007. Technical Summary. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group Ito the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Eds Solomon , S. , Qin , D. , Manning , M. , Chen , Z. , Marquis , M. , Averyt , K. B. , Tignor , M. and Miller , H. L. ). Cambridge University Press , Cambridge, United Kingdom and New York, NY, USA.  

  67. Stier , P. , Feichter , J. , Kinne , S. , Kloster , S. , Vignati , E. and co-authors. 2005. The aerosol-climate model ECHAM5-HAM. Atmos. Chem. Phys . 5 , 1125 - 1156 .  

  68. Stier , P. , Seinfeld , J. H. , Kinne , S. and Boucher , O. 2007. Aerosol ab-sorption and radiative forcing. Atmos. Chem. Phys . 7 , 5237 - 5261 .  

  69. Storelvmo , T. , Kristjánsson , J. E. , Ghan , S., Kirkevag , A. , Seland , O. and Iversen , T. 2006 . Predicting cloud droplet number in CAM-Oslo. J. Geophys. Res . 111 , D24208, doi: https://doi.org/10.1029/2005JDO06300 .  

  70. Str&öm , J. S. , Okada , K. and Heintzenberg , J. 1992 . On the state of mixing of particles due to Brownian coagulation. J. Aerosol Sci . 23 , 467 - 480 .  

  71. Textor , C. , Schulz , M. , Guibert , S. , Kinne , S., Ballcanski, and co-authors. 2006. Analysis and quantification of the diversities of aerosol life cycles within AeroCom . Atmos. Chem. Phys . 6 , 1777– 1813 .  

  72. Textor , C. , Schulz , M. , Guibert , S. , Kinne , S. , Ballcanslci , Y. and co-authors. 2007 . The effect of harmonized emissions on aerosol proper-ties in global models — an AeroCom experiment . Atmos. Chem. Phys. Discuss . 7 , 1699– 1723 .  

  73. Twomey , S. 1977 . The Influence of Pollution on the Shortwave Albedo of Clouds , J. Atmos. Sci . 34 , 1149 – 1152 .  

  74. Vignati , E. , Wilson , J. and Stier , P., 2004 . M7: a size resolved aerosol mixture module for the use in global aerosol models . J. Geophys. Res . 109 , D22 202 , doi: https://doi.org/10.1029/2003JD004485 .  

  75. Wesely , M. L., 1989 . Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical Models . Atmos. Environ . 23 , 1293 – 1304 .  

  76. Wilson , J. , Cuvelier , C. and Raes , F. 2001 . A modelling study of global mixed aerosol fields . J. Geophys. Res 106 , 34081 – 34108 .  

  77. Xu , K.-M. and Randall , D. A. 1996 . A Semiempirical Cloudiness Pa-rameterization for Use in Cloud Models . J. Atmos.Sci . 53 , 3084 – 3102 .  

  78. Zhang , G. J. and McFarlane , N. A. 1995 . Sensitivity of climate simula-tions to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model . Atmos. Ocean 33 , 407 – 446 .  

  79. Zhang , M. , Lin , W. , Bretherton , C. S. , Hack , J. J. and Rasch , P. J. 2003 . A modified formulation of fractional stratiform condensation rate in the NCAR Community Atmospheric Model (CAM2) . J. Geophys. Res 108 , 4035 , doi: https://doi.org/10.1029/2002JD002523 .  

  80. Zhang , Y. , Easter , R. , Ghan , S. J. and Abdul-Razzak , H. 2001 . Impact of aerosol size representation on modeling aerosol-cloud interactions. J. Geophys. Res 107 , doi: https://doi.org/10.1029/2001JDO01549 .  

comments powered by Disqus