Start Submission Become a Reviewer

Reading: The recent Arctic warm period

Download

A- A+
Alt. Display

Original Research Papers

The recent Arctic warm period

Authors:

J. E. Overland ,

NOAA/Pacific Marine Environmental Laboratory, Seattle, WA 98115, US
X close

M. Wang,

NOAA/Pacific Marine Environmental Laboratory, Seattle, WA 98115; Joint Institute for the Study of the Ocean and Atmosphere (JISAO), Box 354235, University of Washington, Seattle, WA 98195, US
X close

S. Salo

NOAA/Pacific Marine Environmental Laboratory, Seattle, WA 98115, US
X close

Abstract

Arctic winter, spring and autumn surface air temperature (SAT) anomalies and associated sea level pressure (SLP) fields have decidedly different spatial patterns at the beginning of the 21st century (2000–2007) compared to most of the 20th century; we suggest calling this recent interval the Arctic warm period. For example, spring melt date as measured at the North Pole Environmental Observatory (2002–2007) is 7 d earlier than the records from the Russian North Pole stations (1937–1987) and statistically different at the 0.05 level. The 20th centurywas dominated by the two main climate patterns, the Arctic Oscillation/Northern Annular Mode (AO/NAM)and the Pacific North American-like (PNA*) pattern. The predominately zonal winds associated with the positive phases of these patterns contribute to warm anomalies in the Arctic primarily over their respective Eastern andWestern Hemisphere land areas, as in 1989–1995 and 1977–1987. In contrast, SAT in winter (DJF) and spring (MAM) for 2000–2007 show an Arctic-wide SAT anomaly of greater than +1.0°C and regional hot spots over the central Arctic of greater than +3.0°C. Unlike the AO and PNA*, anomalous geostrophic winds for 2000–2007 often tended to blow toward the central Arctic, a meridional wind circulation pattern. In spring 2000–2005, these winds were from the Bering Sea toward the North Pole, whereas in 2006–2007 they were mostly from the eastern Barents Sea. A meridional pattern was also seen in the late 1930s with anomalous winter (DJFM) SAT, at Spitzbergen, of greater than +4°C. Both periods suggest natural atmospheric advective contributions to the hot spots with regional loss of sea ice. Recent warm SAT anomalies in autumn are consistent with climate model projections in response to summer reductions in sea ice extent. The recent dramatic loss of Arctic sea ice appears to be due to a combination of a global warming signal and fortuitous phasing of intrinsic climate patterns.

How to Cite: Overland, J.E., Wang, M. and Salo, S., 2008. The recent Arctic warm period. Tellus A: Dynamic Meteorology and Oceanography, 60(4), pp.589–597. DOI: http://doi.org/10.1111/j.1600-0870.2007.00327.x
  Published on 01 Jan 2008
 Accepted on 7 Mar 2008            Submitted on 21 Aug 2007

References

  1. ACIA 2005 . The Arctic Climate Impact Assessment . Cambridge Univer-sity Press , New York , 1042 pp .  

  2. Belchansky , G. I. , Douglas , D. C. , Mordvitsev , I. N. and Platonov , N. G. 2002 . Estimating the time of melt onset and freeze onset over Arctic sea-ice area using active and passive microwave data. J. Remote Sens. Environ . 92 , 21 - 39 .  

  3. Bengtsson , L. , Semenov , V. A. and Johannessen , 0. M. 2004. The early twentieth-century warming in the Arctic—A possible mechanism./. Climate 17 , 4045-405 7 .  

  4. Chapman , W. L. and Walsh , J. E. 2007 . Simulations of Arctic temper-ature and pressure by global coupled models. .1 . Climate 20 , 609 – 632 .  

  5. Comiso , J. C. , Parkinson , C. L. , Gersten , R. and Stock , L. 2008 . Ac-celerated decline in the Arctic sea ice cover. Geophys. Res. Lett . 35 , L01703, doi: https://doi.org/10.1029/2007GL031972 .  

  6. Deser , C. and Teng , H. 2008 . Evolution of Arctic sea ice concentration trends and the role of atmospheric circulation forcing, 1979-2007 . Geophys. Res. Lett . 35 , L02504 , doi: https://doi.org/10.1029/2007GL032023 .  

  7. Frolov , I. E. , Gudkovich , Z. M. , Radionov , V. E , Shirochkov , A. V. and Timokhov , L. A. 2005 . The Arctic Basin: Results from the Russian Drifting Stations. Praxis Publishing, Chichester, UK , 272 pp.  

  8. Holland , M. M. , Bitz , C. M. and Tremblay , B. 2006 . Future abrupt reduc-tions in the summer Arctic Sea ice . Geophys. Res. Lett . 33 , L23503 , doi: https://doi.org/10.1029/2006GL028024 .  

  9. Krupnik , I. and Jolly , D. 2002 . The Earth is Faster Now . Arctic Research Consortium , Fairbanks , AK , 384 pp .  

  10. Maslanik , J. , Drobot , S. , Fowler , C. , Emery , W. and Barry , R. 2007 . On the Arctic climate paradox and the continuing role of atmospheric circulation in affecting sea ice conditions. Geophys. Res. Lett . 34 , L03711, doi: https://doi.org/10.1029/2006GL028269 .  

  11. Morison , J. , Aagaard , K. , Falkner , K. , Kikuchi , T. , McPhee , M. and co-authors 2006 . The North Pole Environmental Observatory: a community resource tracking a changing Arctic through the Interna-tional Polar Year . Eos, Trans. Am. Geophys. Un . 87 , 0535P-04, [NP] .  

  12. Nghiem , S. V. , Rigor , I. G. , Perovich , D. K. , Clemente-Colón , P., Weath-erly , J. W. and co-authors 2007 . Rapid reduction of Arctic perennial sea ice . Geophys. Res. Lett . 34 , L19504, doi: https://doi.org/10.1029/2007GL031138 .  

  13. Ogi , M. and Wallace , J. M. 2007 . Summer minimum Arctic sea ice extent and the associated summer atmospheric circulation. Geophys. Res. Lett . 34 , L12705, doi: https://doi.org/10.1029/2007GL029897 .  

  14. Overland , J. E. and Wang , M. 2005 . The Arctic climate paradox: the recent decrease of the Arctic Oscillation. Geophys. Res. Lett . 32 , L06701, doi: https://doi.org/10.1029/2004GL021752 .  

  15. Overland , J. E. and Wang , M. 2007 . Future regional sea ice declines. Geophys. Res. Lett . 34 , L17705, doi: https://doi.org/10.1029/2007GL030808 .  

  16. Palmer , T. N. 1999 . A nonlinear dynamical perspective on climate prediction . J. Climate 12 , 575 – 591 .  

  17. Quadrelli , R. and Wallace , J. M. 2004 . A simplified linear framework for interpreting patterns of northern hemisphere wintertime climate variability. J. Climate 17 , 3728 - 3744 .  

  18. Rigor , I. G. and Wallace , J. M. 2004 . Variations in the age of Arctic sea-ice and summer sea-ice extent. Geophys. Res. Lett . 31 , L09401, doi: https://doi.org/10.1029/2004GL019492 .  

  19. Serreze , M. C. and Francis , J. A. 2006 . The Arctic amplification debate. Climatic Change 76 , 241 - 264 .  

  20. Serreze , M. C. , Holland , M. M. and Stroeve , J. 2007. Perspectives on the Arctic’s shrinking sea-ice cover. Science 315 , 1533 - 1536 .  

  21. Shimada , K. , Kamoshida , T. , Itoh , M. , Nishino , S. , Carmack , E. , and co-authors 2006 . Pacific Ocean inflow: influence on catastrophic re-duction of sea ice cover in the Arctic Ocean. Geophys. Res. Lett . 33 , L08605, doi: https://doi.org/10.1029/2005GL025624 .  

  22. Stroeve , J. , Holland , M. M. , Meier , W. , Scambos , T. and Serreze , M. 2007 . Arctic sea ice decline, faster than forecast. Geophys. Res. Lett . 24 , L09501, doi: https://doi.org/10.1029/2007GL029703 .  

  23. Stroeve , J. M. , Serreze , M. , Drobot , S. , Gearheard , S. , Holland , M. and co-authors 2008 . Arctic sea ice plummets in 2007 . Eos, Trans. Am. Geophys. Un . 89 , 13 - 20 .  

  24. Trenberth , K. E. and Paolino , D. A., Jr. 1980 . The Northern Hemisphere sea-level pressure data set: trends, errors and discontinuities . Mon. Weather Rev . 108 , 855 – 872 .  

  25. Trenberth , K. E. , Stepaniak , D. P. and Smith , L. 2005 . Interannual vari-ability of the patterns of atmospheric mass distribution . J. Climate 18 , 2812 – 2825 .  

  26. Van Ulden , A. P. and van Oldenborgh , G. J. 2005 . Large-scale atmo-spheric circulation biases and changes in global climate model sim-ulations and their importance for regional climate scenarios: a case study for West-Central Europe. Atmos. Chem. Phys. Disc . 5 , 7415 - 7455 .  

  27. Wu , Q. and Straus , D. M. 2004 . AO, COWL and observed climate trends. J. Climate 17 , 2139 - 2156 .  

comments powered by Disqus