Start Submission Become a Reviewer

Reading: Estimation of length scales from mesoscale networks

Download

A- A+
Alt. Display

Original Research Papers

Estimation of length scales from mesoscale networks

Authors:

Danijel Belušić ,

Department of Geophysics, Faculty of Science, University of Zagreb, 10000 Zagreb, HR
X close

Larry Mahrt

COAS, Oregon State University, Corvallis, OR 97331, US
X close

Abstract

This paper reports on the spatial scales of meandering motions using recent data from three mesoscale networks. Although the mesoscale motions extend over a wide range of scales, and time series do not reveal a spectral peak, the examination of the spatial coherence does identify a preferred spatial scale. Several independent methods reveal the same preferred spatial scale for horizontal coherence for a given network. However, the spatial scale differs by a factor of two between the different networks examined here, presumably due to the different topography and surface conditions.

The preferred spatial scale increases roughly linearly with range of time scales included in the evaluation. However, the details of this increase do not seem to be predictable, again partly due to site-specific conditions. The preferred spatial scales are of the order of a few kilometres for time scales less than an hour, but may reach tens of kilometres for time scales of several hours.

The preferred horizontal length scale determines the area over which the flow features are statistically coherent. Measurements at a single location can be considered as representative for an area comparable to or smaller than the preferred scale.

How to Cite: Belušić, D. and Mahrt, L., 2008. Estimation of length scales from mesoscale networks. Tellus A: Dynamic Meteorology and Oceanography, 60(4), pp.706–715. DOI: http://doi.org/10.1111/j.1600-0870.2007.00328.x
  Published on 01 Jan 2008
 Accepted on 3 Mar 2008            Submitted on 28 Aug 2007

References

  1. Anfossi , D. , Oettl , D. , Degrazia , G. and Goulart , A. 2005 . An analy-sis of sonic anemometer observations in low wind speed conditions . Boundary-Layer Meteorol . 114 , 179 – 203 .  

  2. Anfossi , D. , Alessandrini , S. , Trini Castelli , S. , Ferrero , E. , Oettl , D. and co-authors. 2006 . Tracer dispersion simulation in low wind speed conditions with a new 2D Langevin equation system . Atmos. Environ . 40 , 7234 - 7245 .  

  3. Chimonas , G. 1999 . Steps, waves and turbulence in the stably strati-fied planetary boundary layer . Boundary-Layer Meteorol . 90 , 397 – 421 .  

  4. Davies , B. M. and Thomson , D. J. 1999 . Comparisons of some param-eterizations of wind direction variability with observations. Atmos. Environ . 33 , 4909 - 4917 .  

  5. Etling , D. 1990 . On plume meandering under stable stratification . Atmos. Environ . 24A , 1979 – 1985 .  

  6. Gage , K. S. 2004 . Dynamic processes contributing to the mesoscale spectrum of atmospheric motions pp. 223-263. In: Atmospheric Turbulence and Mesoscale Meteorology (eds E. Fedorovich , R. Rotunno and B. Stevens ) . Cambridge University Press , Cambridge, UK , 280 pp .  

  7. Gifford , E A. 1959 . Statistical properties of a fluctuating plume disper-sion model . Adv. Geophys . 6 , 117 – 137 .  

  8. Hanna , S. R. 1983 . Lateral turbulence intensity and plume meandering during stable conditions . J. Clim. Appl. Meteorol . 22 , 1424 – 1430 .  

  9. Hanna , S. R. 1990 . Lateral dispersion in light wind stable conditions . Ii Nuovo Cimento 13C , 889 – 894 .  

  10. Hanna , S. R. and Chang , J. C. 1992 . Representativeness of wind mea-surements on a mesoscale grid with station separations of 312 m to 10 km. Boundary-Layer Meteorol . 60 , 309 - 324 .  

  11. Haramina , T. and Tilgner , A. 2006 . Spatial correlation of temperature in turbulent Rayleigh-Benard convection . Phys. Rev. E 74 , 066304 .  

  12. Kristensen , L. , Jensen , N 0.. and Peterson , E. L. 1981 . Lateral Disper-sion of Pollutants in a Very Stable Atmosphere: The Effect of the Meandering. Atmos. Environ . 15 , 837 - 844 .  

  13. Kustas , W. , Li , E , Jackson , J. , Preuger , J. , MacPherson , J. and co-authors . 2004. Effects of remote sensing pixel resolution on modeled energy flux variability of croplands in Iowa. Remote Sens. Environ . 92 , 535 - 547 .  

  14. Lenschow , D. H. and Stankov , B. B. 1986 . Length scales in the convective boundary layer . J. Atmos. Sci . 43 , 1198 – 1209 .  

  15. Lilly , D. K. 1983 . Stratified turbulence and the mesoscale variability of the atmosphere . J. Atmos. Sci . 40 , 749 – 761 .  

  16. Lindborg , E. 1999 . Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence? J. Fluid Mech . 388 , 259 – 288 .  

  17. Mahrt , L. 2007 . Weak-wind mesoscale meandering in the nocturnal boundary layer . Environ. Fluid Mech . 7 , 331 – 347 .  

  18. Mahrt , L. and Vickers , D. 2002 . Contrasting vertical structures of noc-turnal boundary layers . Boundary-Layer Meteorol . 105 , 351 – 363 .  

  19. Mahrt , L. and Vickers , D. 2005 . Boundary-layer adjustment over small-scale changes of surface heat flux . Boundary-Layer Meteorol . 116 , 313 – 330 .  

  20. Moore , G. E. , Milich , L. B. and Liu , M. K. 1988 . Plume behaviors observed using lidar and SF6 tracer at a flat and hilly site . Atmos. Environ . 22 , 1673 – 1688 .  

  21. Moron , V. , Robertson , A. W. , Ward , M. N. and Camberlin , P. 2007 . Spatial coherence of tropical rainfall at the regional scale . J. Clim . 20 , 5244 – 5263 .  

  22. Nakamura , R. and Mahrt , L. 2005 . A study of intermittent turbu-lence with CASES-99 tower measurements . Boundary-Layer Mete-orol . 114 , 367 – 387 .  

  23. Nastrom , G. D. and Gage , K. S. 1985 . A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft./ . Atmos. Sci . 42 , 950 – 960 .  

  24. Peterson , H. , Lamb , B. and Stock , D. 1990 . Interpretation of measured tracer concentration fluctuations using a sinusoidal meandering plume model. J. Appl. Meteorol . 29 , 1284 - 1299 .  

  25. Poulos , G. , Blumen , W. , Fritts , D. , Lundquist , J. , Sun , J. , and co-authors . 2001. CASES-99: A Comprehensive Investigation of the Stable Noc-turnal Boundary Layer. Bull. Am. Meteorol. Soc . 83 , 555 - 581.  

  26. Sorbjan , Z. 1989 . Structure of the Atmospheric Boundary Layer . Prentice Hall, Englewood Cliffs, New Jersey , 317 pp .  

  27. Vickers , D. and Mahrt , L. 2007 . Observations of the cross-wind velocity variance in the stable boundary layer . Environ. Fluid Mech . 7 , 55 – 71 .  

  28. Webster , H. N. and Thomson , D. J. 2005 . Parameterising low-frequency meander in atmospheric dispersion models. In: Proceedings of the 10th Int. Conf. on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes. Crete, Greece, 594 - 598 .  

  29. Žagar , N. , Žagar , M. , Cedilnik , J. , GregoriC , G. and Rakovec , J . 2006 . Validation of mesoscale low-level winds obtained by dynamical down-scaling of ERA40 over complex terrain. Tellus 58A , 445 - 455 .  

comments powered by Disqus