Start Submission Become a Reviewer

Reading: A thermodynamically general theory for convective vortices

Download

A- A+
Alt. Display

Original Research Papers

A thermodynamically general theory for convective vortices

Author:

Nilton O. Renno

Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford, OX1 3PU, UK; Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109, US
X close

Abstract

Convective vortices are common features of atmospheres that absorb lower-entropy-energy at higher temperatures than they reject higher-entropy-energy to space. These vortices range from small to large-scale and play an important role in the vertical transport of heat, momentum, and tracer species. Thus, the development of theoretical models for convective vortices is important to our understanding of some of the basic features of planetary atmospheres.

The heat engine framework is a useful tool for studying convective vortices. However, current theories assume that convective vortices are reversible heat engines. Since there are questions about how reversible real atmospheric heat engines are, their usefulness for studying real atmospheric vortices is somewhat controversial. In order to reduce this problem, a theory for convective vortices that includes irreversible processes is proposed.

The paper’s main result is that the proposed theory provides an expression for the pressure drop along streamlines that includes the effects of irreversible processes. It is shown that a simplified version of this expression is a generalization of Bernoulli’s equation to convective circulations. It is speculated that the proposed theory not only explains the intensity, but also sheds light on other basic features of convective vortices such as their physical appearance.

How to Cite: Renno, N.O., 2008. A thermodynamically general theory for convective vortices. Tellus A: Dynamic Meteorology and Oceanography, 60(4), pp.688–699. DOI: http://doi.org/10.1111/j.1600-0870.2007.00331.x
  Published on 01 Jan 2008
 Accepted on 17 Mar 2008            Submitted on 8 Jun 2007

References

  1. Adkins , C. J. 1968 . Equilibrium Thermodynamics . Cambridge Univer-sity Press , Cambridge , UK , 285 pp .  

  2. Adams , D. K. and Renno , N 0.. 2005 . Thermodynamic efficiencies of an idealized global climate model. Clim. Dyn . 25 , 801 – 813 , doi: https://doi.org/10.1007/s00382-005-0071-y .  

  3. Barcilon , A. I. 1967 . Vortex decay above a stationary boundary . J. Fluid Mech . 28 , 65 – 84 .  

  4. Bluestein , H. B. 1980 . The University of Oklahoma severe storms inter-cept project-1979 . Bull. Amer. Meteorol. Soc . 61 , 560 – 567 .  

  5. Bluestein , H. B. , McCaul , E. W. and Byrd , G. P. 1990 . Thermodynamic measurements under a wall cloud. Mon. Wea. Rev . 118 , 794 - 799 .  

  6. Bluestein , H. B. , Weiss , C. C. , French , M. M. , Holthaus , E. M., Tana-machi , R. L. and co-authors. 2007 . The structure of tornadoes near Attica, Kansas, on 12 May 2004: high-resolution, mobile , doppler radar observations. Mon. Wea. Rev . 135 , 475 - 506 .  

  7. Davies-Jones , R. P. 1986 . Tornado dynamics. In: Thunderstorms: A Social and Technological DocumentaryVolume 2 , 2nd Edition (ed. E Kessler ). University of Oklahoma Press , Norman, OK, USA , 197 - 236 .  

  8. Dowell , D. C. , Alexander , C. R. , Wurman , J. M. and Wicker , L. J. 2005 . Centrifuging of hydrometeors and debris in tornadoes: radar-reflectivity patterns and wind-measurement errors . Mon. Wea. Rev . 133 , 1501 – 1524 .  

  9. Emanuel , K. A. 1986 . An air-sea interaction theory for tropical cyclones. Part I: steady state maintenance . J. Atmos. Sci . 43 , 585 – 604 .  

  10. Emanuel , K. A. 1988 . The maximum intensity of hurricanes. .1 . Atmos. Sci . 45 , 1143 – 1155 .  

  11. Emanuel , K. A. 1994 . Atmospheric Convection . Oxford University Press , New York , 580 pp .  

  12. Emanuel , K. A. and Rotunno , R. 1989 . Polar lows as arctic hurricanes . Tellus 41A , 1 – 17 .  

  13. Emanuel , K. A. and Bister , M. 1996 . Moist convective velocity and buoyancy scales . J. Atmos. Sci . 53 , 3276 – 3285 .  

  14. Fankhauser , J. C. 1976 . Structure of an evolving hailstorm, Part II: ther-modynamic structure and airflow in the near environment. Mon. Wea. Rev . 104 , 576 - 587 .  

  15. Ferri , F , Smith , P. H. , Lemmon , M. and Renno , N. 2003 . Dust dev-ils as observed by Mars Pathfinder, J. Geophys. Res 108 , 7/1-7/10 , doi: https://doi.org/10.1029/2000JE001421 .  

  16. Golden , J. H. 1973 . The Life Cycle of Florida Keys Waterspouts as the Result of Five Interacting Scales of Motion . PhD Dissertation . Florida State University , 371 pp .  

  17. Golden , J. H. 1974 . The life cycle of Florida Keys’ waterspouts. I. J. Appl. Meteorol . 13 , 676 - 692 .  

  18. Golden , J. H. and Purcel , D. 1978 . Life cycle of the Union City, Oklahoma tornado and comparison with waterspouts. Mon. Wea. Rev . 106 , 3 - 11 .  

  19. Goody , R. 2000 . Sources and sinks of climate entropy . Q. J. R. Meteorol. Soc . 126 , 1953 – 1970 .  

  20. Goody , R. 2003 . On the mechanical efficiency of deep, tropical convec-tion . J. Atmos. Sci . 60 , 2827 – 2832 .  

  21. Kangieser , P. C. 1954 . A physical explanation for the hollow structure of waterspout tubes . Mon. Wea. Rev . 82 , 147 – 152 .  

  22. Koschmieder , E. L. 1993 . Benard Cells and Taylor Vortices . Cambridge University Press , Cambridge , UK , 337 pp .  

  23. Landsea , C. W. , Franklin , J. L. , McAdie , C. J. , Beven II J. L. , Gross , J. M. and co-authors . 2004 . A reanalysis of hurricane Andrew’s intensity . Bull. Amer. Meteorol. Soc . 85 , 1699– 1712 .  

  24. Lee , J. J. , Samaras , T. M. and Young , C. R. 2004 . Pressure measurements at the ground in an F-4 tornado. In: Proceedings of the 22m Conference on Severe Local Storms. Paper 11.4, Hyannis, MA.  

  25. Leibovich , S. 1978 . The structure of vortex breakdown . Ann. Rev. Fluid Mech . 10 , 221 – 246 .  

  26. Leverson , V. H. , Sinclair , P. C. and Golden , J. H. 1977 . Waterspout wind, temperature and pressure structure deduced from aircraft mea-surements. Mon. Wea. Rev . 105 , 725 - 733 .  

  27. Lewellen W. S. , Lewellen , D. C. and Sykes , R. I. 1997 . Large-eddy simulation of a tornado’s interaction with the surface . J. Atmos. Sci . 54 , 581 – 605 .  

  28. Lewellen , D. C. , Lewellen , W. S. and Xia , J. 2000 . The Influence of a Local Swirl Ratio on Tornado Intensification near the Surface. J. Atmos. Sci . 57 , 527 - 544 .  

  29. Liu , Y. , Zhang , D.-L. and Yau , M. K. 1999 . A multi-scale numerical study of hurricane Andrew (1992). Part II. Kinematics and Irmer core structure . J. Atmos. Sci . 127 , 2597 – 2616 .  

  30. MacPherson , J. I. and Betts , A. K. 1997 . Aircrafts encounters with strong coherent vortices over the boreal forest. J. Geophys. Res . 102 , 29231 - 29234 .  

  31. Michaels , Timothy I. and Rafkin , S. C. R. 2004 . Large eddy simulation of the convective boundary layer of Mars . Qt. J. R.l Meteorol. Soc . 130 , 1251 – 1274 .  

  32. Michaud , L. M. 1995 . Heat to work conversion during upward convec-tion: Camot engine method . Atmos. Res . 39 , 157 – 178 .  

  33. Moller , A. R. 1978 . The improved NWS storm spoters’ training program at Ft. Worth, Tex . Bull. Amer. Meteorol. Soc . 59 , 1574 – 1582 .  

  34. Pauluis , O. and Held , I. M. 2002a . Entropy budget of an atmosphere in radiative-convective equilibrium. Part I: maximum work and frictional dissipation . J. Atmos. Sci . 59 , 140 - 149 .  

  35. Pauluis , O. and Held , I. M. 2002b . Entropy budget of an atmosphere in radiative-convective equilibrium. Part II: latent heat transport and moist processes . J. Atmos. Sci . 59 , 125 - 139 .  

  36. Pauluis O. , Balaji , V. and Held , I. M. 2000 . Frictional dissipation in a precipitating atmosphere. J. Atmos. Sci 57 , 989 - 994 .  

  37. Renno , N 0.. 2001 . Comments on “Frictional dissipation in a precipitat-ing atmosphere”. J. Atmos. Sci . 58 , 1173 - 1177 .  

  38. Renno , N 0.. and Ingersoll , A. P. 1996 . Natural convection as a heat engine: a theory for CAPE. J. Atmos. Sci . 53 , 572 - 585 .  

  39. Renno , N 0.. and Bluestein , H. B. 2001 . A simple theory for waterspouts. J. Atmos. Sci . 58 , 927 - 932 .  

  40. Renno , N. O. , Burkett , M. L. and Larkin , M. P. 1998 . A simple theory for dust devils. J. Atmos. Sci . 55 , 3244 - 3252 .  

  41. Renno , N. O. , Nash , A. A. , Lunine , J., and Murphy , J . 2000 . Martian and terrestrial dust devils: test of a scaling theory using Pathfinder data. J. Geophys. Res. (Planets) 105 El , 1859 – 1865 .  

  42. Renno , N. O. , Abreu , V. , Koch , J. , Smith , P. H. , Hartogenisis , O., and co-authors . 2004. MATADOR 2002: a field experiment on con-vective plumes and dust devils, J. Geophys. Res . 109 , E07001, doi: https://doi.org/10.1029/2003JE002219 .  

  43. Rotunno , R. 1977 . Numerical simulation of a laboratory vortex . J. Atmos. Sci . 34 , 1942 – 1956 .  

  44. Samaras , T. M. 2004 . An historical perspective of in-situ observations within tornado cores . In: Proceedings of the 22`I Conference on Severe Local Storms. Paper 11.4 , Hyannis , MA .  

  45. Sinclair , P. C. 1966 . A Quantitative Analysis of the Dust Devil . PhD Dissertation . The University of Arizona , 292 pp .  

  46. Sinclair , P. C. 1969 . General characteristics of dust devils . J. Appl. Me-teorol . 8 , 32 – 45 .  

  47. Snow , J. T. 1984 . On the formation of particle sheaths in columnar vor-tices. J. Atmos. Sci . 41 , 2477 - 2491 .  

  48. Sotiropoulos , E and Ventikos , Y. 2001 . The three dimensional structure of confined swirling flows with vortex breakdown./ . Fluid Mech . 426 , 155 – 175 .  

  49. Souza , E. P. , Renno , N O. and Silva Dias , M. A. E 2000. Convective circulations induced by deforestation. J. Atmos. Sci . 57 , 2915 - 2922 .  

  50. Spohn , A. , Mory , M. and Hopfinger , E. J. 1993 . Observations of vortex breakdown in a cylindrical container with a rotating bottom. Experi-ments in Fluids 14 , 70 - 77 .  

  51. Spohn , A. , Mory , M. and Hopfinger , E. J. 1998 . Experiments on vortex breakdown in a confined flow generated by a rotating disk. J. Fluid Mech . 370 , 73 - 99 .  

  52. Wakimoto , R. M. and Liu , C. 1998 . The Garden City, Kansas, storm during VORTEX 95. Part II: the wall cloud and tornado . Mon. Wea. Rev . 126 , 393 – 408 .  

  53. Wurman , J. and Gill , S. 2000 . Finescale Radar Observations of the Dimmitt, Texas (2 June 1995), Tornado. Mon. Wea. Rev . 128 , 2135 - 2164 .  

comments powered by Disqus