Start Submission Become a Reviewer

Reading: Externalizing the lateral boundary conditions from the dynamic core in semi-implicit semi-La...

Download

A- A+
Alt. Display

Original Research Papers

Externalizing the lateral boundary conditions from the dynamic core in semi-implicit semi-Lagrangian models

Authors:

Piet Termonia ,

Royal Meteorological Institute, Brussels, BE
X close

Fabrice Voitus

Météo-France/CNRM/GMAP, Toulouse, FR
X close

Abstract

Research is still undertaken to develop so-called transparent lateral boundary conditions (LBC) for limited-area numerical weather prediction models. In the widely used semi-implicit semi-Lagrangian schemes, this naturally leads to LBC formulations that are intrinsically intertwined with the numerics of the dynamic core. This may have profound consequences for the implementation and the maintenance of future model codes. For instance, scientific development on the dynamics may be hindered by constraints coming from today’s choices in the LBC formulation and vice versa. Building further on the work of Aidan McDonald, this paper proposes an approach where (1) the LBCs can be imposed by an extrinsic numerical scheme that is fundamentally different from the one used for the dynamic core in the interior domain and (2) substituting one such LBC scheme for another is possible in a manner that leaves the Helmholtz solver unmodified. It is argued that this concept may provide the necessary frame for formulating transparent boundary conditions in spectral limited-area models. Since this idea touches all aspects of the LBC problem, its feasibility can only be established by a rigorous systematic approach. As a first step, this paper provides promising experimental support in a one-dimensional shallow-water model.

How to Cite: Termonia, P. and Voitus, F., 2008. Externalizing the lateral boundary conditions from the dynamic core in semi-implicit semi-Lagrangian models. Tellus A: Dynamic Meteorology and Oceanography, 60(4), pp.632–648. DOI: http://doi.org/10.1111/j.1600-0870.2007.00334.x
  Published on 01 Jan 2008
 Accepted on 14 Apr 2008            Submitted on 28 Aug 2007

References

  1. ALADIN International team, 1997. The ALADIN project: mesoscale modelling seen as basic tool for weather forecasting and atmospheric research. World Meteorol. Organ. Bull . 46 , 317 - 324 .  

  2. Arakawa , A. and Lamb , V. R. 1977 . Computational design of the basic dynamical processes of the UCLA general circulation model . Meth. Comput. Phys . 17 , 173 – 265 .  

  3. Best , M. J. , Beljaars , A. , Polcher , J. and Viterbo , P. 2004 . A Proposed Structure for Coupling Tiled Surfaces with the Planetary Boundary Layer . J. Hydrometeor . 5 , 1271 – 1278 .  

  4. B&#00E9;nard , P. 2003. Stability of Semi-Implicit and Iterative Centered-Implicit Time Discretizations for Various Equation Systems Used in NWP. Mon. Wea. Rev . 131 , 2479-249 1 .  

  5. Boyd , J. P. 2005 . Limited-Area Fourier Spectral Models and Data Anal-ysis Schemes: Windows, Fourier Extension, Davies Relaxation, and All That . Mon. Wea. Rev . 133 , 2030 – 2042 .  

  6. Davies , H. C. 1976 . A lateral boundary formulation for multilevel pre-diction models . Q. J. Roy. Meteorol. Soc . 102 , 405 – 418 .  

  7. Durran , D. R. 1999 . Numerical Methods for Wave Equations in Geo-physical Fluid Dynamics , Springer-Verlag , New York , 465 pp .  

  8. Gill , A. E. 1982 . Atmosphere-Ocean Dynamics , Academic Press , CA , 662 pp .  

  9. Haugen , J. E. and Machenhauer , B. 1993 . A Spectral Limited-Area Model Formulation with Time-Dependent Boundary Conditions Ap-plied to the Shallow-Water Equations. Mon. Wea. Rev . 121 , 2618 - 2630 .  

  10. McDonald , A. 2000 . Boundary Conditions for Semi-Lagrangian Schemes: Testing some Alternatives in One-Dimensional Models . Mon. Wea. Rev . 128 , 4084 – 4096 .  

  11. McDonald , A. 2002 . Testing Transparent Boundary Conditions for the Shallow Water Equations in a Nested Environment. HIRLAM tech-nical report 54, (Available from A. McDonald, Irish Meteorological Service, Glasnevin Hill, Dublin 9, Ireland) 28 pp .  

  12. McDonald , A. 2003 . Transparent Boundary Conditions for the Shallow-Water Equations: Testing in a Nested Environment . Mon. Wea. Rev . 131 , 698 – 705 .  

  13. McDonald , A. 2005 . Transparent lateral boundary conditions for baro-clinic waves: a study of two elementary systems of equations . Tellus 57A , 171 – 182 .  

  14. McDonald , A. 2006 . Transparent lateral boundary conditions for baro-clinic waves II. Introducing potential voracity waves . Tellus 58A , 210 – 220 .  

  15. Nicolis , C. 2007 . Dynamics of Model Error: The Role of the Boundary Conditions . J. Atmos. Sci . 64 , 204 – 215 .  

  16. Oliger , J. and Sundstrom , A. 1978 . Theoretical and practical aspects of some initial boundary value problems in fluid dynamics. SIAM J. Appl. Math . 35 , 419 - 446 .  

  17. Rad&#00F3;ti , G. 1995. Comments on “A Spectral Limited-Area Formulation with Time-Dependent Boundary Conditions for the Shallow-Water Equations”. Mon. Wea. Rev. 123 , 3122-312 3 .  

  18. Robert , A. J. 1966 . The integration of a low order spectral form of the primitive meteorological equations. J. Meteorol. Soc. Japan 44 , 237 - 244 .  

  19. Robert , A. J. 1969 . The integration of a spectral model of the atmosphere by the implicit method. In: Proceedings of the WMOIIUGG Symposium on NWP . Japan Meteor. Agency , Tokyo , VII 19 – 24 .  

  20. Robert , A. J. 1981 . A stable numerical integration scheme for the prim-itive meteorological equations. Atmos. Ocean 19 , 35 - 46 .  

  21. Sundstr&#00F6;m , A. and Elvius , T. 1979 . Computational problems related to limited area modelling. In: Numerical Methods Used in Atmospheric Models , Volume II of GARP Publication Series No. 17, World Mete-orological Organisation, Geneva , 379 - 416 .  

  22. Termonia , P. 2003. Monitoring and Improving the Temporal Interpola-tion of Lateral-Boundary Coupling Data for Limited-Area Models. Mon. Wea. Rev . 131 , 2450 - 2463 .  

  23. Termonia , P. 2004 . Monitoring the Coupling-Update Frequency of a Limited-Area Model by Means of a Recursive Digital Filter . Mon. Wea. Rev . 132 , 2130 – 2141 .  

  24. Termonia , P. and Hamdi , R. 2007 . Stability and accuracy of the physics-dynamics coupling in spectral models . Q. J. R. Meteorol. Soc . 133 , 1589 – 1604 .  

  25. Warner , T. T. , Peterson , R. A. and Treadon , R. E. 1997 . A Tutorial on Lateral Boundary Conditions as a Basic and Potentially Serious Lim-itation to Regional Weather Forecasting . Bull. Am. Meteorol. Soc . 78 , 2599 – 2617 .  

  26. Wedi , N. P. 1999 . The numerical coupling of the physical parameteriza-tions to the “dynamical” equations in a forecast model. ECMWF Tech. Memo. 274 , European Centre for Medium-Range Weather Forecasts. ECMWF , Reading , United Kingdom .  

comments powered by Disqus