Start Submission Become a Reviewer

Reading: Spatially and temporally varying adaptive covariance inflation for ensemble filters

Download

A- A+
Alt. Display

Original Research Papers

Spatially and temporally varying adaptive covariance inflation for ensemble filters

Author:

Jeffrey L. Anderson

NCAR Data Assimilation Research Section PO Box 3000 Boulder, CO 80307-3000, US
X close

Abstract

Ensemble filters are used in many data assimilation applications in geophysics. Basic implementations of ensemble filters are trivial but are susceptible to errors from many sources. Model error, sampling error and fundamental inconsistencies between the filter assumptions and reality combine to produce assimilations that are suboptimal or suffer from filter divergence. Several auxiliary algorithms have been developed to help filters tolerate these errors. For instance, covariance inflation combats the tendency of ensembles to have insufficient variance by increasing the variance during the assimilation. The amount of inflation is usually determined by trial and error. It is possible, however, to design Bayesian algorithms that determine the inflation adaptively. A spatially and temporally varying adaptive inflation algorithm is described. A normally distributed inflation random variable is associated with each element of the model state vector. Adaptive inflation is demonstrated in two low-order model experiments. In the first, the dominant error source is small ensemble sampling error. In the second, the model error is dominant. The adaptive inflation assimilations have better mean and variance estimates than other inflation methods.

How to Cite: Anderson, J.L., 2009. Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus A: Dynamic Meteorology and Oceanography, 61(1), pp.72–83. DOI: http://doi.org/10.1111/j.1600-0870.2007.00361.x
  Published on 01 Jan 2009
 Accepted on 16 Jul 2008            Submitted on 7 Jan 2008

References

  1. Anderson , J. L. 1996 . A method for producing and evaluating probabilistic forecasts from ensemble model integrations . J. Clim . 9 , 1518 – 1530 .  

  2. Anderson , J. L. 2001 . An ensemble adjustment Kalman filter for data assimilation . Mon. Wea. Rev . 129 , 2894 – 2903 .  

  3. Anderson , J. L. 2003 . A local least squares framework for ensemble filtering . Mon. Wea. Rev . 131 , 634 – 642 .  

  4. Anderson , J. L. 2007a . An adaptive covariance inflation error correction algorithm for ensemble filters . Tellus 59A , 210 – 224 .  

  5. Anderson , J. L. 2007b . Exploring the need for localization in ensemble data assimilation using an hierarchical ensemble filter . Physica D 230 , 99 – 111 .  

  6. Anderson , J. L. and Anderson , S. L. 1999 . A Monte Carlo implementa-tion of the nonlinear filtering problem to produce ensemble assimila-tions and forecasts . Mon. Wea. Rev . 127 , 2741 – 2758 .  

  7. Anderson , J. L. and Collins , N. 2007 . Scalable implementations of en-semble filter algorithms for data assimilation . J. Atmos. Ocean Tech . 24A , 1452 – 1463 .  

  8. Buizza , R. , Miller , M. and Palmer , T. N. 1999 . Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quart. J. Roy. MeteoroL Soc . 125 , 2887 - 2908 .  

  9. Burgers , G. , van Leeuwen , P. J. and Evensen , G. 1998 . Analysis scheme in the ensemble Kalman filter . Mon. Wea. Rev . 126 , 1719 – 1724 .  

  10. Daley , R. 1993 . Estimating the observation error statistics for atmo-spheric data assimilation . Ann. Geophys . 11 , 634 – 647 .  

  11. Dee , D. P. 1995 . On-line estimation of error covariance parameters for atmospheric data assimilation . Mon. Wea. Rev . 123 , 1128 – 1145 .  

  12. Dee , D. P. and da Silva , A. M. 1999 . Maximum-likelihood estimation of forecast and observation error covariance parameters, Part I: method-ology . Mon. Wea. Rev . 127 , 1822 – 1834 .  

  13. Dee , D. P. and Todling , R. 2000 . Data assimilation in the presence of forecast bias: the GEOS moisture analysis . Mon. Wea. Rev . 128 , 3268 – 3282 .  

  14. Dee , D. R , Gaspari , G. , Redder , C. Rulchovets , L. and da Silva , A. M. 1999 . Maximum-likelihood estimation of forecast and observation error covariance parameters, Part II: applications . Mon. Wea. Rev . 127 , 1835– 1849 .  

  15. Evensen , G. 1994 . Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to do forecast error statistics . J. Geophys. Res . 99 ( C5 ), 10143 – 10162 .  

  16. Evensen , G., 2006 . Data Assimilation: The Ensemble Kalman Filter. Springer, 280 pp .  

  17. Eyre , J. R. , Kelly , G. A. , McNally , A. P. , Andersson , E. and Persson , A. 1993 . Assimilation of TOVS radiance information through one-dimensional variational analysis. Quart. J. Roy. Meteor Soc . 119 , 1427 - 1463 .  

  18. Furrer , R. and Bengtsson , T. 2007 . Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants . J. Multi-variate Anal . 98 ( 2 ), 227 – 255 .  

  19. Gaspari , G. and Cohn , S. E. 1999 . Construction of correlation functions in two and three dimensions . Quart. J. Roy. Meteorol. Soc . 125 , 723 – 757 .  

  20. Hamill , T. M. and Whitaker , J. S. 2005 . Accounting for error due to unresolved scales in ensemble data assimilation: a comparison of different approaches . Mon. Wea. Rev . 133 , 3132 – 3147 .  

  21. Hamill , T. M. , Whitaker , J. S. and Snyder , C. 2001 . Distance-dependent filtering of background-error covariance estimates in an ensemble Kalman filter . Mon. Wea. Rev . 129 , 2776 – 2790 .  

  22. Hansen , J. A. 2002 . Accounting for model error in ensemble-based state estimation and forecasting . Mon. Wea. Rev . 130 , 2373 – 2391 .  

  23. Harlim , J. and Hunt , B. R. 2007 . A non-gaussian ensemble filter for assimilating infrequent noisy observations . Tellus 59A , 225 – 237 .  

  24. Houtekamer , P. L. and Mitchell , H. L. 2001 . A sequential ensemble Kalman filter for atmospheric data assimilation . Mon. Wea. Rev . 129 , 123 – 137 .  

  25. Kalnay , E. , Li , H. , Miyoshi , T. , Yang , S.-C. and Ballabrera-Poy , J. 2007. 4-D-Var or ensemble Kalman filter? Tellus 59A , 758 - 773 .  

  26. Keppenne , C. L. and Rienecker , M. M. 2002 . Initial testing of a massively parallel ensemble Kalman filter with the Poseidon isopycnal ocean general circulation model . Mon. Wea. Rev . 130 , 2951 – 2965 .  

  27. Kistler , R. , Collins , W. , Saha , S. , White , G. and Woolen , J. 2001 . The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and doc-umentation. Bull. Amer. Met. Soc . 82 , 247 - 267 .  

  28. Lorenz , E. N. 1996 . Predictability: a problem partly solved. In: Proc-ceedings of the ECMWF Seminar on Predictability, Vol . I, ECMWF, Reading, United Kingdom , 1 - 18 .  

  29. Lorenz , E. N. and Emanuel , K. A. 1998 . Optimal sites for supplementary weather observations: simulation with a small model . J. Atmos. Sci . 55 , 399 – 414 .  

  30. Mitchell , H. L. and Houtekamer , P. L. 2000 . An adaptive ensemble Kalman filter. Mon. Wea. Rev . 128 , 416 - 433 .  

  31. Mitchell , H. L. , Houtekamer , P. L. and Pellerin , G. 2002 . Ensemble size, balance, and model-error representation in an ensemble Kalman filter . Mon. Wea. Rev . 130 , 2791 – 2808 .  

  32. Ott , E. , Hunt , B. , Szunyogh , I. , Zimin , A. , Kostelich , E. and co-authors 2004 . A local ensemble Kalman filter for atmospheric data assimila-tion. Tellus 56A , 415 - 428 .  

  33. Pham , D. T. 2001 . Stochastic methods for sequential data assimilation in strongly non-linear systems . Mon. Wea. Rev . 129 , 1194 – 1207 .  

  34. Sandu , A. , Constantinescu , E. M. , Carmichael , G. R. , Chai , T. , Seinfeld , J. H., and co-authors 2007 . Localized ensemble Kalman filter dynamic data assimilation for atmospheric chemistry. Lecture Notes Comput. Sci . 4487 , 1018 - 1025 .  

  35. Tippett , M. K. , Anderson , J. L. , Bishop , C. H. , Hamill , T. M. and Whitaker , J. S. 2003 . Ensemble square root filters. Mon. Wea. Rev . 131 , 1485 - 1490 .  

  36. Uppala , S. M. , Kallber , P. W., Simmons , A. J. , Andrae , U. , Da Costa Bechtold , V. and 45 contributing authors , 2005 . The ERA-40 re-analysis . Quart. J. Roy. Meteor Soc . 131 , 2961 - 3012 .  

  37. Uzunoglu , B. , Fletcher , S. J. , Zupanslci , M. and Navon , I. M. 2007 . Adaptive ensemble reduction and inflation. Quart. J. Roy. Meteor Soc . 133 , 1281 - 1294 .  

  38. Whitaker , J. S. and Hamill , T. M. 2002 . Ensemble data assimilation without perturbed observations . Mon. Wea. Rev . 130 , 1913 – 1924 .  

comments powered by Disqus