Start Submission Become a Reviewer

Reading: Inferred variables in data assimilation: quantifying sensitivity to inaccurate error statistics

Download

A- A+
Alt. Display

Original Research Papers

Inferred variables in data assimilation: quantifying sensitivity to inaccurate error statistics

Authors:

Martin Juckes ,

British Atmospheric Data Centre, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, GB
X close

Bryan Lawrence

British Atmospheric Data Centre, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, GB
X close

Abstract

The ability of data assimilation systems to infer unobserved variables has brought major benefits to atmospheric and oceanographic sciences. Information is transferred from observations to unobserved variables in two ways: through the temporal evolution of the predictive equations (either a forecast model or its adjoint) or through an error covariance matrix (or a parametrized approximation to the error covariance). Here, it is found that high frequency information tends to flow through the former route, low frequency through the latter. It is also noted that using the Kalman Filter analysis to estimate the correlation between the observed and unobserved variables can lead to a biased result because of an error correlation: this error correlation is absent when the Kalman Smoother is used.

How to Cite: Juckes, M. and Lawrence, B., 2009. Inferred variables in data assimilation: quantifying sensitivity to inaccurate error statistics. Tellus A: Dynamic Meteorology and Oceanography, 61(1), pp.129–143. DOI: http://doi.org/10.1111/j.1600-0870.2007.00376.x
  Published on 01 Jan 2009
 Accepted on 30 Sep 2008            Submitted on 29 Mar 2008

References

  1. Bell , M. J. , Martin , M. J. and Nichols , N. K. 2004 . Assimilation of data into an ocean model with systematic errors near the equator . Quart. J. R. Met. Soc . 130 , 853 – 871 .  

  2. Benjamin , S. G. , Devenyi , D. , Weygandt , S. , Brundage , K. J. , Brown , J. M. and co-authors 2004 . An hourly assimilation-forecast cycle: the RUC. Mon. Wea. Rev . 132 , 495 - 518 .  

  3. Brogan , W. L. 1991 . Modern Control Theory 3rd Edition , Prentice Hall, NJ , Englewood Cliffs .  

  4. Cohn , S. E. , Sivalcumaran , N. S. and Todling , R. 1994 . A fixed-lag Kalman smoother for retrospective data assimilation . Mon. Wea. Rev . 122 , 2838 – 2867 .  

  5. Dee , D. P. and Da Silva , A. M. 1998 . Data assimilation in the presence of forecast bias . Quart. J. R. Met. Soc . 124 , 269 – 295 .  

  6. Dee , D. P. and Todling , R. 2000 . Data assimilation in the presence of forecast bias: the GEOS moisture analysis . Mon. Wea. Rev . 128 , 3268 – 3282 .  

  7. Dong , Z. and You , Z. 2006 . Finite-horizon robust Kalman filter-ing for uncertain discrete time-varying systems with uncertain-covarince white noises . IEEE Sign. Proc. Lett . 13 ( 8 ), 493 – 496 .  

  8. Fisher , M. , Leutbecher , M. and Kelly , G. A. 2005 . On the equivalence between Kalman smoothing and weak-constraint four-dimensional variational data assimilation . Quart. J. R. Met. Soc . 131 , 3235 – 3246 .  

  9. Gillijns , S. and De Moor , B. 2006 . Model error estimation in ensemble data assimilation . Nonlin. Proc. Geophys . 14 , 59 – 71 .  

  10. Griffin , R. E. and Sage , P. 1969 . Sensitivity analysis of discrete filetering and smoothing algorithms . AIAA J . 7 , 1890 – 1897 .  

  11. Heffes , H. 1966 . The effect of erroneous models on the Kalman filter response . IEEE Trans. Automat. Contr AC- 11 , 541 – 543 .  

  12. Juckes , M. N. 2006 . Evaluation of mipas ozone fields assimilated using a new algorithm constrained by isentropic tracer advection . Atmos. Chem. Dyn . 6 , 1549 – 1565 .  

  13. Juckes , M. N. 2007 . An annual cycle of long lived stratospheric gases from MIPAS . Atmos. Chem. Dyn . 7 , 1879 – 1897 .  

  14. Juckes , M. N. and Lawrence , B. N. 2006 . Data assimilation for re-analyses: potential gains from full use of post-analysis-time observa-tions . Tellus 58A , 171 – 178 , doi: https://doi.org/10.1111/j.1600-0870.2006.00167 .  

  15. Kalman , R. E. and Bucy , R. 1961 . New results in linear filtering and prediction. J. Basic Eng . 83 D , 95 – 108 .  

  16. Keppenne , C. L. , Rienecker , M. M. , Kurkowski , N. P. and Adamec , D. D. 2005 . Ensemble Kalman filter assimilation of altimeter and temperature data with bias correction and application to seasonal prediction. Nonlin. Proc. Geophys . 12 , 491 - 503 .  

  17. Li , Z. and Navon , I. M. 2001 . Optimality of variational data assimilation and its relationship with the Kalman filter and smoother. Quart. J. R. Met. Soc . 127 , 661 - 684 .  

  18. Petersen , I. R. and McFarlane , D. C. 1994 . Optimal guaranteed cost control and filtering for uncertain linear systems. IEEE Trans. Autom. Contr 39 ( 9 ), 1971 - 1977 .  

  19. Polavarapu , S. , Shepherd , T. G. , Rochon , Y. and Ren , S. 2005 . Some challenges of middle atmosphere data assimilation . Quart. J. R. Met. Soc . 131 , 3513 – 3527 .  

  20. Sangsuk-Iam , S. and Bullock , T. E. 1990 . Analysis of discrete-time Kalman filtering under incorrect noise covariances . IEEE Trans. Au-tom. Contr 35 ( 12 ), 1304 – 1309 .  

  21. Snyder , C. and Zhang , F. 2003 . Assimilation of simulated Doppler radar observations with an ensemble Kalman Filter . Mon. Wea. Rev . 131 , 1663 – 1677 .  

  22. Sørensen , J. V. T. , Madsen , H. and Madsen , H. 2006 . Parame-ter sensitivity of three Kalman filter schemes for assimilation of water levels in shelf sea models . Ocean Modell . 11 , 441 – 463 .  

  23. Stark , H. and Woods , J. W. 2002 . Probability and Random Processes with Applications to Signal Processing 3rd Edition , Prentice Hall , New Jersey .  

  24. Stein , M. L. 1997 . Efficiency of linear predictors for periodic processes using an incorrect covariance function . J. Statist. Plann . 58 , 321 – 331 .  

  25. Todling , R. , Cohn , S. E. and Sivalcumaran , N. S. 1998 . Suboptimal schemes for retrospective data assimilation based on the fixed-lag Kalman smoother. Mon. Wea. Re v . 126 , 2274 – 2286 .  

  26. Uppala , S. M. , Kallberg , P. W. , Simmons , A. J. , Andrae , U. , da Costa Bechtold , V. and co-authors . 2006. The ERA-40 re-analysis. Quart. J. R. Met. Soc . 131 , 2961-301 2 .  

  27. Zhang , F. , Snyder , C. and Sun , J. 2004 . Impacts of initial estimate and observational availability on convective-scale data assimilation with an ensemble Kalman Filter. Mon. Wea. Re v . 132 , 1238 – 1253 .  

  28. Zhu , Y. Q. , Todling , R. , Guo , J. , Cohn , S. E. , Navon , I. M. and co-authors . 2003. The GEOS-3 retrospective data assimilation system: The 6-hour lag case. Mon. Wea. Rev . 131 , 2129-215 0 .  

comments powered by Disqus